skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 14, 2026

Title: Topological Time Frequency Analysis of Functional Brain Signals
We present a novel topological framework for analyzing functional brain signals using time-frequency analysis. By integrating persistent homology with time-frequency representations, we capture multi-scale topological features that characterize the dynamic behavior of brain activity. This approach identifies 0D (connected components) and 1D (loops) topological structures in the signal's time-frequency domain, enabling robust extraction of features invariant to noise and temporal misalignments. The proposed method is demonstrated on resting-state functional magnetic resonance imaging (fMRI) data, showcasing its ability to discern critical topological patterns and provide insights into functional connectivity. This topological approach opens new avenues for analyzing complex brain signals, offering potential applications in neuroscience and clinical diagnostics.  more » « less
Award ID(s):
2010778
PAR ID:
10657095
Author(s) / Creator(s):
 ;  
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
ISSN:
2694-0604
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Topological data analysis (TDA) is increasingly recognized as a promising tool in the field of neuroscience, unveiling the underlying topological patterns within brain signals. However, most TDA related methods treat brain signals as if they were static, i.e., they ignore potential non-stationarities and irregularities in the statistical properties of the signals. In this study, we develop a novel fractal dimension-based testing approach that takes into account the dynamic topological properties of brain signals. By representing EEG brain signals as a sequence of Vietoris-Rips filtrations, our approach accommodates the inherent non-stationarities and irregularities of the signals. The application of our novel fractal dimension-based testing approach in analyzing dynamic topological patterns in EEG signals during an epileptic seizure episode exposes noteworthy alterations in total persistence across 0, 1, and 2-dimensional homology. These findings imply a more intricate influence of seizures on brain signals, extending beyond mere amplitude changes. 
    more » « less
  2. Topological data analysis (TDA) has proven to be a potent approach for extracting intricate topological structures from complex and high-dimensional data. In this paper, we propose a TDA-based processing pipeline for analyzing multi-channel scalp EEG data. The pipeline starts with extracting both frequency and temporal information from the signals via the Hilbert–Huang Transform. The sequences of instantaneous frequency and instantaneous amplitude across all electrode channels are treated as approximations of curves in the high-dimensional space. TDA features, which represent the local topological structure of the curves, are further extracted and used in the classification models. Three sets of scalp EEG data, including one collected in a lab and two Brain–computer Interface (BCI) competition data, were used to validate the proposed methods, and compare with other state-of-art TDA methods. The proposed TDA-based approach shows superior performance and outperform the winner of the BCI competition. Besides BCI, the proposed method can also be applied to spatial and temporal data in other domains such as computer vision, remote sensing, and medical imaging. 
    more » « less
  3. Over the last two decades, topological data analysis (TDA) has emerged as a very powerful data analytic approach that can deal with various data modalities of varying complexities. One of the most commonly used tools in TDA is persistent homology (PH), which can extract topological properties from data at various scales. The aim of this article is to introduce TDA concepts to a statistical audience and provide an approach to analyzing multivariate time series data. The application’s focus will be on multivariate brain signals and brain connectivity networks. Finally, this paper concludes with an overview of some open problems and potential application of TDA to modeling directionality in a brain network, as well as the casting of TDA in the context of mixed effect models to capture variations in the topological properties of data collected from multiple subjects. 
    more » « less
  4. Vascular networks play a crucial role in understanding brain functionalities. Brain integrity and function, neuronal activity and plasticity, which are crucial for learning, are actively modulated by their local environments, specifically vascular networks. With recent developments in high-resolution 3D light-sheet microscopy imaging together with tissue processing techniques, it becomes feasible to obtain and examine large-scale brain vasculature in mice. To establish a structural foundation for functional study, however, we need advanced image analysis and structural modeling methods. Existing works use geometric features such as thickness, tortuosity, etc. However, geometric features cannot fully capture structural characteristics such as the richness of branches, connectivity, etc. In this paper, we study the morphology of brain vasculature through a topological lens. We extract topological features based on the theory of topological data analysis. Comparing of these robust and multi-scale topological structural features across different brain anatomical structures and between normal and obese populations sheds light on their promising future in studying neurological diseases. 
    more » « less
  5. Topaz, Chad M. (Ed.)
    Understanding the common topological characteristics of the human brain network across a population is central to understanding brain functions. The abstraction of human connectome as a graph has been pivotal in gaining insights on the topological properties of the brain network. The development of group-level statistical inference procedures in brain graphs while accounting for the heterogeneity and randomness still remains a difficult task. In this study, we develop a robust statistical framework based on persistent homology using theorder statisticsfor analyzing brain networks. The use of order statistics greatly simplifies the computation of the persistent barcodes. We validate the proposed methods using comprehensive simulation studies and subsequently apply to the resting-state functional magnetic resonance images. We found a statistically significanttopologicaldifference between the male and female brain networks. 
    more » « less