Deployability, multifunctionality, and tunability are features that can be explored in the design space of origami engineering solutions. These features arise from the shape-changing capabilities of origami assemblies, which require effective actuation for full functionality. Current actuation strategies rely on either slow or tethered or bulky actuators (or a combination). To broaden applications of origami designs, we introduce an origami system with magnetic control. We couple the geometrical and mechanical properties of the bistable Kresling pattern with a magnetically responsive material to achieve untethered and local/distributed actuation with controllable speed, which can be as fast as a tenth of a second with instantaneous shape locking. We show how this strategy facilitates multimodal actuation of the multicell assemblies, in which any unit cell can be independently folded and deployed, allowing for on-the-fly programmability. In addition, we demonstrate how the Kresling assembly can serve as a basis for tunable physical properties and for digital computing. The magnetic origami systems are applicable to origami-inspired robots, morphing structures and devices, metamaterials, and multifunctional devices with multiphysics responses.
more »
« less
This content will become publicly available on September 9, 2026
Origami frustration and its influence on energy landscapes of origami assemblies
Harnessing instabilities of multicomponent multistable structural assemblies can potentially lead to scalable and reversible functionalities, which can be enhanced by exploring frustration. For instance, standard Kresling origami cells exhibit nontunable intrinsic energy landscapes determined by their geometry and material properties, limiting their adaptability after fabrication. To overcome this limitation, we introduce frustration to enable fine-tuning of the energy landscape and resulting deformation states. By prestressing the Kresling cell by means of special springs with individual control, we induce either global or localized (i.e., crease level) frustration, which allows changing the energy barrier (cell or assembly). We investigate the mechanical behavior of frustrated Kresling assemblies, both theoretically and experimentally, under various loading and boundary conditions. Our findings reveal that changing the frustration state leads to precise control of folding sequences, enabling previously inaccessible folding paths. The proposed concept paves the way for applications in mechanical metamaterials and other fields requiring highly programmable and reconfigurable systems – e.g., prosthetic limbs.
more »
« less
- Award ID(s):
- 2323276
- PAR ID:
- 10657150
- Publisher / Repository:
- PNAS
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 122
- Issue:
- 36
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Inspired by the embodied intelligence observed in octopus arms, we introduce magnetically controlled origami robotic arms based on Kresling patterns for multimodal deformations, including stretching, folding, omnidirectional bending, and twisting. The highly integrated motion of the robotic arms is attributed to inherent features of the reconfigurable Kresling unit, whose controllable bistable deploying/folding and omnidirectional bending are achieved through precise magnetic actuation. We investigate single- and multiple-unit robotic systems, the latter exhibiting higher biomimetic resemblance to octopus’ arms. We start from the single Kresling unit to delineate the working mechanism of the magnetic actuation for deploying/folding and bending. The two-unit Kresling assembly demonstrates the basic integrated motion that combines omnidirectional bending with deploying. The four-unit Kresling assembly constitutes a robotic arm with a larger omnidirectional bending angle and stretchability. With the foundation of the basic integrated motion, scalability of Kresling assemblies is demonstrated through distributed magnetic actuation of double-digit number of units, which enables robotic arms with sophisticated motions, such as continuous stretching and contracting, reconfigurable bending, and multiaxis twisting. Such complex motions allow for functions mimicking octopus arms that grasp and manipulate objects. The Kresling robotic arm with noncontact actuation provides a distinctive mechanism for applications that require synergistic robotic motions for navigation, sensing, and interaction with objects in environments with limited or constrained access. Based on small-scale Kresling robotic arms, miniaturized medical devices, such as tubes and catheters, can be developed in conjunction with endoscopy, intubation, and catheterization procedures using functionalities of object manipulation and motion under remote control.more » « less
-
Abstract The Kresling truss structure, derived from Kresling origami, has been widely studied for its bi-stability and various other properties that are useful for diverse engineering applications. The stable states of Kresling trusses are governed by their geometry and elastic response, which involves a limited design space that has been well explored in previous studies. In this work, we present a magneto-Kresling truss design that involves embedding nodal magnets in the structure, which results in a more complex energy landscape, and consequently, greater tunability under mechanical deformation. We explore this energy landscape first along the zero-torque folding path and then release the restraint on the path to explore the complete two-degree-of-freedom behavior for various structural geometries and magnet strengths. We show that the magnetic interaction could alter the potential energy landscape by either changing the stable configuration, adjusting the energy well depth, or both. Energy wells with different minima endow this magneto-elastic structure with an outstanding energy storage capacity. More interestingly, proper design of the magneto-Kresling truss system yields a tri-stable structure, which is not possible in the absence of magnets. We also demonstrate various loading paths that can induce desired conformational changes of the structure. The proposed magneto-Kresling truss design sets the stage for fabricating tunable, scalable magneto-elastic multi-stable systems that can be easily utilized for applications in energy harvesting, storage, vibration control, as well as active structures with shape-shifting capability.more » « less
-
Lightweight structures with bioinspired metamaterials, with their uniquely engineered properties not found in naturally occurring materials, have garnered significant attention for their potential in various engineering applications. This study explores the mechanical behavior of sandwich plate structures utilizing the Kresling origami pattern, fabricated through a straightforward 3D printing process. By conducting 3-point bending and compression tests, as well as simulations with Abaqus software, the research investigates the distinctive mechanical properties and performance enhancements these origami-inspired structures offer under mechanical loading. This study is noteworthy for being the first to investigate the bending characteristics of sandwich structures utilizing the two cell Kresling pattern or double Kresling, an area that has not been previously explored. Utilizing the Kresling structure in sandwich panels poses a challenge due to its rotational behavior. To address this, we employ a double Kresling pattern, which confines the rotation to the middle layer. This approach ensures that the outer layers remain stable, maintaining the overall integrity of the sandwich panel structure during deformation under mechanical loading. The findings reveal that the 3D-printed Kresling origami core significantly reduces weight while maintaining structural integrity, making it especially beneficial for aerospace engineering, where lightweight yet strong materials are crucial. This research highlights the potential of Kresling-patterned sandwich plates to improve efficiency and performance in supersonic vehicles, providing valuable insights into their structural efficiency and applicability in advanced engineering fields.more » « less
-
Structural DNA nanotechnology has enabled the design and construction of complex nanoscale structures with precise geometry and programmable dynamic and mechanical properties. Recent efforts have led to major advances in the capacity to actuate shape changes of DNA origami devices and incorporate DNA origami into larger assemblies, which open the prospect of using DNA to design shape-morphing assemblies as components of micro-scale reconfigurable or sensing materials. Indeed, a few studies have constructed higher order assemblies with reconfigurable devices; however, these demonstrations have utilized structures with relatively simple motion, primarily hinges that open and close. To advance the shape changing capabilities of DNA origami assemblies, we developed a multi-component DNA origami 6-bar mechanism that can be reconfigured into various shapes and can be incorporated into larger assemblies while maintaining capabilities for a variety of shape transformations. We demonstrate the folding of the 6-bar mechanism into four different shapes and demonstrate multiple transitions between these shapes. We also studied the shape preferences of the 6-bar mechanism in competitive folding reactions to gain insight into the relative free energies of the shapes. Furthermore, we polymerized the 6-bar mechanism into tubes with various cross-sections, defined by the shape of the individual mechanism, and we demonstrate the ability to change the shape of the tube cross-section. This expansion of current single-device reconfiguration to higher order scales provides a foundation for nano to micron scale DNA nanotechnology applications such as biosensing or materials with tunable properties.more » « less
An official website of the United States government
