Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Harnessing instabilities of multicomponent multistable structural assemblies can potentially lead to scalable and reversible functionalities, which can be enhanced by exploring frustration. For instance, standard Kresling origami cells exhibit nontunable intrinsic energy landscapes determined by their geometry and material properties, limiting their adaptability after fabrication. To overcome this limitation, we introduce frustration to enable fine-tuning of the energy landscape and resulting deformation states. By prestressing the Kresling cell by means of special springs with individual control, we induce either global or localized (i.e., crease level) frustration, which allows changing the energy barrier (cell or assembly). We investigate the mechanical behavior of frustrated Kresling assemblies, both theoretically and experimentally, under various loading and boundary conditions. Our findings reveal that changing the frustration state leads to precise control of folding sequences, enabling previously inaccessible folding paths. The proposed concept paves the way for applications in mechanical metamaterials and other fields requiring highly programmable and reconfigurable systems – e.g., prosthetic limbs.more » « lessFree, publicly-accessible full text available September 9, 2026
-
Free, publicly-accessible full text available April 24, 2026
-
The concepts of origami and kirigami have often been presented separately. Here, we put forth a synergistic approach—the folded kirigami—in which kirigami assemblies are complemented by means of folding, typical of origami patterns. Besides the emerging patterns themselves, the synergistic approach also leads to topological mechanical metamaterials. While kirigami metamaterials have been fabricated by various methods, such as 3D printing, cutting, casting, and assemblage of building blocks, the “folded kirigami” claim their distinctive properties from the universal folding protocols. For a target kirigami pattern, we design an extended high-genus pattern with appropriate sets of creases and cuts, and proceed to fold it sequentially to yield the cellular structure of a 2D lattice endowed with finite out-of-plane thickness. The strategy combines two features that are generally mutually exclusive in canonical methods: fabrication involving a single piece of material and realization of nearly ideal intercell hinges. We test the approach against a diverse portfolio of triangular and quadrilateral kirigami configurations. We demonstrate a plethora of emerging metamaterial functionalities, including topological phase-switching reconfigurability between polarized and nonpolarized states in kagome kirigami, and availability of nonreciprocal mechanical response in square-rhombus kirigami.more » « less
-
Soft robots often draw inspiration from nature to navigate different environments. Although the inching motion and crawling motion of caterpillars have been widely studied in the design of soft robots, the steering motion with local bending control remains challenging. To address this challenge, we explore modular origami units which constitute building blocks for mimicking the segmented caterpillar body. Based on this concept, we report a modular soft Kresling origami crawling robot enabled by electrothermal actuation. A compact and lightweight Kresling structure is designed, fabricated, and characterized with integrated thermal bimorph actuators consisting of liquid crystal elastomer and polyimide layers. With the modular design and reprogrammable actuation, a multiunit caterpillar-inspired soft robot composed of both active units and passive units is developed for bidirectional locomotion and steering locomotion with precise curvature control. We demonstrate the modular design of the Kresling origami robot with an active robotic module picking up cargo and assembling with another robotic module to achieve a steering function. The concept of modular soft robots can provide insight into future soft robots that can grow, repair, and enhance functionality.more » « less
-
Origami foldcores, especially the blockfold cores, have emerged as promising components of high-performance sandwich composites. Inspired by the blockfold origami, we propose the axisymmetric blockfold origami (ABO), which is composed of both rectangular and trapezoidal panels. The ABO inherits the non-flat-foldability of the blockfold origami, and furthermore, displays self-locking mechanisms and enhanced stiffness. The geometry and folding kinematics of the ABO are formulated with respect to the geometric parameters and the folding angle of the assembly. The mathematical conditions are derived for the existence of self-locking mechanisms. We perform compression test simulations to demonstrate enhanced stiffness and increased load-bearing capacity. We find that the existence of rectangular panels not only dominates the non-flat-foldability of the ABO, but also contributes to the enhancement of the stiffness. Our results suggest the potential applications of the ABO for building load-bearing structures with rotational symmetry. Moreover, we discuss the prospects of designing tightly assembled multi-layered origami structures with prestress induced by the mismatch of successive layers to enlighten future research.more » « less
An official website of the United States government
