Abstract To achieve net zero carbon emissions by mid-century, the United States may need to rely on carbon dioxide removal (CDR) to offset emissions from difficult-to-decarbonize sectors and/or shortfalls in near-term mitigation efforts. CDR can be delivered using many approaches with different requirements for land, water, geologic carbon storage capacity, energy, and other resources. The availability of these resources varies by region in the U.S. suggesting that CDR deployment will be uneven across the country. Using the global change analysis model for the United States (GCAM-USA), we modeled six classes of CDR and explored their potential using four scenarios: a scenario where all the CDR pathways are available (Full Portfolio), a scenario with restricted carbon capture and storage (Low CCS), a scenario where the availability of bio-based CDR options is limited (Low Bio), and a scenario with constraints on enhanced rock weathering (ERW) capabilities (Low ERW). We find that by employing a diverse set of CDR approaches, the U.S. could remove between 1 and 1.9 GtCO2/yr by midcentury. In the Full Portfolio scenario, direct air carbon capture and storage (DACCS) predominates, delivering approximately 50% of CO2removal, with bioenergy with carbon capture and storage contributing 25%, and ERW delivering 11.5%. Texas and the agricultural Midwest lead in CDR deployment due to their abundant agricultural land and geological storage availability. In the Low CCS scenario, reliance on DACCS decreases, easing pressure on energy systems but increasing pressure on the land. In all cases CDR deployment was found to drive important impacts on energy, land, or materials supply chains (to supply ERW, for example) and these effects were generally more pronounced when fewer CDR technologies were available.
more »
« less
Status of CCS injection well regulation in the United States and correlates of project location and maturity
Abstract The number of carbon dioxide capture and sequestration (CCS) projects under development in the United States increased sharply following the passage of the Inflation Reduction Act in 2022. The 168 applications subsequently filed with the Environmental Protection Agency reflect projects that are unevenly spread geographically and vary in maturity. Here we summarize the heterogeneous regulatory environment for approval of injection wells across the country and examine whether there is a relationship between the existence and maturity of injection well applications and a range of factors that could affect the development process. These factors include EPA region, state primacy, geologic resources for sequestration, point source carbon dioxide (CO2) emissions, public land ownership, pore space legislation, and community characteristics. We find that CCS project approvals have not matched the pace of application submissions and there is wide geographic variation in siting. We find evidence that EPA region and state primacy are associated with project maturity, while geologic resources, state pore space legislation, and county-level racial group shares are associated with project location. While we make no causal claims, we find with statistical significance that sequestration sites are more frequently located in counties with higher non-White populations. We find no clear relationship between state CO2emissions, public land ownership, or median household income with either project location or maturity.
more »
« less
- Award ID(s):
- 2230743
- PAR ID:
- 10657206
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research: Energy
- Volume:
- 2
- Issue:
- 4
- ISSN:
- 2753-3751
- Format(s):
- Medium: X Size: Article No. 045021
- Size(s):
- Article No. 045021
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Preliminary model for student ownership of projects written by Dimitri R. Dounas-Frazer, Laura Ríos, and H. J. Lewandowski In many upper-division lab courses, instructors implement multiweek student-led projects. During such projects, students may design and carry out experiments, collect and analyze data, document and report their findings, and collaborate closely with peers and mentors. To better understand cognitive, social, and affective aspects of projects, we conducted an exploratory investigation of student ownership of projects. Ownership is a complex construct that refers to, e.g., students' willingness and ability to make strategic decisions about their project. Using data collected through surveys and interviews with students and instructors at five institutions, we developed a preliminary model for student ownership of projects. Our model describes ownership as a relationship between student and project. This relationship is characterized by student interactions with the project during three phases: choice of topic, execution of experiment, and synthesis of results. Herein, we explicate our model and demonstrate that it maps well onto students' and instructors' conceptions of ownership and ideas presented in prior literature. Physics Education Research Conference 2019 Part of the PER Conference series Provo, UT: July 24-25, 2019more » « less
-
Abstract Atmospheric greenhouse gases (GHGs) must be reduced to avoid an unsustainable climate. Because carbon dioxide is removed from the atmosphere and sequestered in forests and wood products, mitigation strategies to sustain and increase forest carbon sequestration are being developed. These strategies require full accounting of forest sector GHG budgets. Here, we describe a rigorous approach using over one million observations from forest inventory data and a regionally calibrated life-cycle assessment for calculating cradle-to-grave forest sector emissions and sequestration. We find that Western US forests are net sinks because there is a positive net balance of forest carbon uptake exceeding losses due to harvesting, wood product use, and combustion by wildfire. However, over 100 years of wood product usage is reducing the potential annual sink by an average of 21%, suggesting forest carbon storage can become more effective in climate mitigation through reduction in harvest, longer rotations, or more efficient wood product usage. Of the ∼10 700 million metric tonnes of carbon dioxide equivalents removed from west coast forests since 1900, 81% of it has been returned to the atmosphere or deposited in landfills. Moreover, state and federal reporting have erroneously excluded some product-related emissions, resulting in 25%–55% underestimation of state total CO2emissions. For states seeking to reach GHG reduction mandates by 2030, it is important that state CO2budgets are effectively determined or claimed reductions will be insufficient to mitigate climate change.more » « less
-
Youth-focused community and citizen science (CCS) is increasingly used to promote science learning and to increase the accessibility of the tools of scientific research among historically marginalized and underserved communities. CCS projects are frequently categorized according to their level of public participation and their distribution of power between professional scientists and participants from collaborative and co-created projects to projects where participants have limited roles within the science process. In this study, we examined how two different CCS models, a contributory design and a co-created design, influenced science self-efficacy and science interest among youth CCS participants. We administered surveys and conducted post-program interviews with youth participation in two different CCS projects in Alaska, the Winterberry Project and Fresh Eyes on Ice, each with a contributory and a co-created model. We found that youth participating in co-created CCS projects reflected more often on their science self-efficacy than did youth in contributory projects. The CCS program model did not influence youths’ science interest, which grew after participating in both contributory and co-created projects. Our findings suggest that when youth have more power and agency to make decisions in the science process, as in co-created projects, they have greater confidence in their abilities to conduct science. Further, participating in CCS projects excites and engages youth in science learning, regardless of the CCS program design.more » « less
-
Abstract Ocean-based carbon dioxide (CO 2 ) removal (CDR) strategies are an important part of the portfolio of approaches needed to achieve negative greenhouse gas emissions. Many ocean-based CDR strategies rely on injecting CO 2 or organic carbon (that will eventually become CO 2 ) into the ocean interior, or enhancing the ocean’s biological pump. These approaches will not result in permanent sequestration, because ocean currents will eventually return the injected CO 2 back to the surface, where it will be brought into equilibrium with the atmosphere. Here, a model of steady state global ocean circulation and mixing is used to assess the time scales over which CO 2 injected in the ocean interior remains sequestered from the atmosphere. There will be a distribution of sequestration times for any single discharge location due to the infinite number of pathways connecting a location at depth with the sea surface. The resulting probability distribution is highly skewed with a long tail of very long transit times, making mean sequestration times much longer than typical time scales. Deeper discharge locations will sequester purposefully injected CO 2 much longer than shallower ones and median sequestration times are typically decades to centuries, and approach 1000 years in the deep North Pacific. Large differences in sequestration times occur both within and between the major ocean basins, with the Pacific and Indian basins generally having longer sequestration times than the Atlantic and Southern Oceans. Assessments made over a 50 year time horizon illustrates that most of the injected carbon will be retained for injection depths greater than 1000 m, with several geographic exceptions such as the Western North Atlantic. Ocean CDR strategies that increase upper ocean ecosystem productivity with the goal of exporting more carbon to depth will have mainly a short-term influence on atmospheric CO 2 levels because ∼70% will be transported back to the surface ocean within 50 years. The results presented here will help plan appropriate ocean CDR strategies that can help limit climate damage caused by fossil fuel CO 2 emissions.more » « less
An official website of the United States government
