skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 21, 2026

Title: Frequency and leg stiffness adaptation in human vertical hopping before, during and after added load
ABSTRACT Terrestrial animal gaits often use spring-like mechanics to enhance movement economy through elastic energy cycling. Hopping is a relatively simple, constrained task, yet retains essential features of bouncing gaits, requiring cyclic regulation of limb stiffness and generation of high muscle forces to support body weight and enable elastic energy cycling. We investigated how humans adjust hopping frequency and leg stiffness before, during and after experiencing added load. Eighteen participants hopped bipedally for 90 s per trial, with hop frequency and height unconstrained, while kinematic, ground reaction force and ankle muscle electromyographic (EMG) data were collected. We analysed mechanics across four conditions: initial body weight (BWi), two added mass trials (+10% and +20% BW) and final body weight (BWf). With added mass, participants increased leg stiffness and maintained a consistent hopping frequency (∼2.15 Hz); yet, when returning to BWf, the elevated leg stiffness was maintained and hopping frequency increased (to ∼2.36 Hz) and reduced centre of mass (CoM) work per hop. BWf adaptations were driven by greater ankle stiffness, leading to less ankle work. Adaptation rates were consistent across trials, with steady-state mechanics reached in ∼30–40 s. Muscle coactivation decreased following BWi. Triceps surae mean EMG was unchanged with added mass and reduced in BWf. Similar patterns of adaptation were observed in bouncing without an aerial phase. Substantial inter-individual variability was observed in preferred hopping mechanics and adaptation strategy. Together, added mass and increased task familiarity led participants to recalibrate their hopping strategy. Based on literature evidence, the adaptations may align with reduced metabolic cost.  more » « less
Award ID(s):
2319710 2021832
PAR ID:
10657290
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
The Company of Biologists
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
228
Issue:
24
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Healthy aging is associated with reduced corticospinal drive to leg muscles during walking. Older adults also exhibit slower or reduced gait adaptation compared to young adults. The objective of this study was to determine age-related changes in the contribution of corticospinal drive to ankle muscles during walking adaptation. Electromyography (EMG) from the tibialis anterior (TA), soleus (SOL), medial, and lateral gastrocnemius (MGAS, LGAS) were recorded from 20 healthy young adults and 19 healthy older adults while they adapted walking on a split-belt treadmill. We quantified EMG-EMG coherence in the beta-gamma (15–45 Hz) and alpha-band (8–15 Hz) frequencies. Young adults demonstrated higher coherence in both the beta-gamma band coherence and alpha band coherence, although effect sizes were greater in the beta-gamma frequency. The results showed that slow leg TA-TA coherence in the beta-gamma band was the strongest predictor of early adaptation in double support time. In contrast, early adaptation in step length symmetry was predicted by age group alone. These findings suggest an important role of corticospinal drive in adapting interlimb timing during walking in both young and older adults. 
    more » « less
  2. Stroke survivors experience muscle weakness and low weight-bearing capacity that impair their walking. The activation of the plantarflexor muscles is diminished following a stroke, which degrades propulsion and balance. Powered exoskeletons can improve gait capacity and restore impaired muscle activity. However, a technical barrier exists to generate systematic control methods to predictably and safely perturb the paretic leg using a wearable device to characterize the plantarflexors’ muscle output for gait training. In this paper, a closed-loop robust controller is designed to impose an ankle joint rotation (i.e., a kinematic perturbation) in the mid-late stance phase to target the soleus muscle using a powered cable-driven ankle-foot orthosis. The goal is to generate soleus muscle activity increments throughout a gait experiment by applying ankle perturbations. This ability to modulate plantarflexor activity can be used in future conditioning studies to improve push-off and propulsion during walking. However, the optimal perturbation magnitude for each participant is unknown. Hence, online adaptation of the ankle perturbation is well-motivated to modulate the soleus response measured using surface electromyography (EMG). An extremum seeking controller (ESC) is implemented in real-time to compute the ankle perturbation magnitude (i.e., dorsiflexion angle) exploiting the soleus EMG response from the previous perturbed step to maximize the soleus response in the next perturbed step. A Lyapunov-based stability analysis is used to guarantee exponential kinematic tracking of the ankle perturbation objective. 
    more » « less
  3. Synergy analysis via dimensionality reduction is a standard approach in biomechanics to capture the dominant features of limb kinematics or muscle activation signals, which can be called “coarse synergies.” Here we demonstrate that the less dominant features of these signals, which are often explicitly disregarded or considered noise, can nevertheless exhibit “fine synergies” that reveal subtle, yet functionally important, adaptations. To find the coarse synergies, we applied non-negative matrix factorization (NMF) to unilateral EMG data from eight muscles of the involved leg in ten people with drop-foot (DF), and of the right leg of 16 unimpaired (control) participants. We then extracted the fine synergies for each group by removing the coarse synergies (i.e., first two factors explaining 85% of variance) from the data and applying Principal Component Analysis (PCA) to those residuals. Surprisingly, the time histories and structure of the coarse EMG synergies showed few differences between DF and controls—even though the kinematics of drop-foot gait is evidently different from unimpaired gait. In contrast, the structure of the fine EMG synergies (as per their PCA loadings) showed significant differences between groups. In particular, loadings forTibialis Anterior,Peroneus Longus,Gastrocnemius Lateralis,BicepsandRectus Femoris,Vastus MedialisandLateralismuscles differed between groups ( p < 0.05 ). We conclude that the multiple differences found in the structure of the fine synergies extracted from EMG in people with drop-foot vs. unimpaired controls—not visible in the coarse synergies—likely reflect differences in their motor strategies. Coarse synergies, in contrast, seem to mostly reflect the gross features of EMG in bipedal gait that must be met by all participants—and thus show few differences between groups. However, drawing insights into the clinical origin of these differences requires well-controlled clinical trials. We propose that fine synergies should not be disregarded in biomechanical analysis, as they may be more informative of the disruption and adaptation of muscle coordination strategies in participants due to drop-foot, age and/or other gait impairments. 
    more » « less
  4. The gait patterns of stroke survivors become slow and metabolically inefficient as a result of muscle weakness and low weight-bearing capacity. Exoskeletons and assistive robots can improve gait kinematics and energetics. However, the use of these powered devices may cause a reliance on the device itself that results in limited lasting improvement of the paretic leg function. Specifically, there exists a need to strengthen and train the response of weak ankle muscles, such as the soleus muscle, in stroke survivors. Impaired activation of the soleus muscle induces unnatural gait kinematics and reduced propulsion. The mechanical modulation of the soleus muscle can improve its loading response and enhance gait performance after a stroke. This paper develops a closed-loop feedback controller to manipulate the ankle joint dynamics to mechanically control the soleus muscle response using a motorized ankle orthosis. The control method is inspired by backstepping control techniques and developed to connect the ankle joint angular velocity and the soleus muscle response during the stance phase of walking. The tracking objective is quantified using an integral-like muscle error between the desired soleus response and the actual muscle response, which is measurable using surface electromyography (EMG). The closed-loop electric motor controller is designed to apply ankle perturbations exploiting the backstepping error and an adaptive control term to cope with uncertain parameters that satisfy the linear-in-the-parameters property. A switching signal is developed using heel and toe ground reaction forces to strategically perturb the ankle and target the soleus muscle loading response in real-time during the mid-late stance phase of walking. A Lyapunov-based stability analysis is used to guarantee a globally uniformly ultimately bounded (GUUB) tracking result. 
    more » « less
  5. Abstract Objective.Transcutaneous electrical stimulation of peripheral nerves is a common technique to assist or rehabilitate impaired muscle activation. However, conventional stimulation paradigms activate nerve fibers synchronously with action potentials time-locked with stimulation pulses. Such synchronous activation limits fine control of muscle force due to synchronized force twitches. Accordingly, we developed a subthreshold high-frequency stimulation waveform with the goal of activating axons asynchronously.Approach.We evaluated our waveform experimentally and through model simulations. During the experiment, we delivered continuous subthreshold pulses at frequencies of 16.67, 12.5, or 10 kHz transcutaneously to the median and ulnar nerves. We obtained high-density electromyographic (EMG) signals and fingertip forces to quantify the axonal activation patterns. We used a conventional 30 Hz stimulation waveform and the associated voluntary muscle activation for comparison. We modeled stimulation of biophysically realistic myelinated mammalian axons using a simplified volume conductor model to solve for extracellular electric potentials. We compared the firing properties under kHz and conventional 30 Hz stimulation.Main results.EMG activity evoked by kHz stimulation showed high entropy values similar to voluntary EMG activity, indicating asynchronous axon firing activity. In contrast, we observed low entropy values in EMG evoked by conventional 30 Hz stimulation. The muscle forces evoked by kHz stimulation also showed more stable force profiles across repeated trials compared with 30 Hz stimulation. Our simulation results provide direct evidence of asynchronous firing patterns across a population of axons in response to kHz frequency stimulation, while 30 Hz stimulation elicited synchronized time-locked responses across the population.Significance.We demonstrate that the continuous subthreshold high-frequency stimulation waveform can elicit asynchronous axon firing patterns, which can lead to finer control of muscle forces. 
    more » « less