Abstract Proprioceptive sensory feedback is crucial for the control of movement. In many ways, sensorimotor control loops in the neuromuscular system act as state feedback controllers. These controllers combine input commands and sensory feedback regarding the mechanical state of the muscle, joint or limb to modulate the mechanical output of the muscles. To understand how these control circuits function, it is necessary to understand fully the mechanical state variables that are signalled by proprioceptive sensory (propriosensory) afferents. Using new computational approaches, we demonstrate how combinations of group Ia and II muscle spindle afferent feedback can allow for tuned responses to force and the rate of force (or length and velocity) and how combinations of muscle spindle and Golgi tendon organ feedback can parse external and internal (self‐generated) force. These models suggest that muscle spindle feedback might be used to monitor and control muscle forces in addition to length and velocity and, when combined with tendon organ feedback, can distinguish self‐generated from externally imposed forces. Given that these models combine feedback from different sensory afferent types, they emphasize the utility of analysing muscle propriosensors as an integrated population, rather than independently, to gain a better understanding of propriosensory–motor control. Furthermore, these models propose a framework that links neural connectivity in the spinal cord with neuromechanical control. Although considerable work has been done on propriosensory–motor pathways in the CNS, our aim is to build upon this work by emphasizing the mechanical context.
more »
« less
This content will become publicly available on November 5, 2026
Influence of exoskeleton stiffness on primary afferent feedback during stretch perturbations of isolated muscle-tendon unit
Abstract Exoskeletons assist and augment human movement, but their effects on proprioceptive feedback remain poorly understood. We examined how parallel exoskeleton stiffness influences primary muscle spindle firing. In an anesthetized rat preparation, controlled stretches of the medial gastrocnemius were applied with springs (0–0.5 N/mm) attached in parallel to the muscle-tendon unit (MTU) to simulate passive exoskeleton assistance. Fascicle length was measured with sonomicrometry, force and MTU length with a servo motor, and spindle instantaneous firing rate (IFR) with dorsal root recordings. Increasing exoskeleton stiffness decreased biological muscle force (3.1 ± 0.6 N to 1.6 ± 0.6 N, p < 0.001) and stiffness (4.4 ± 1.5 N/mm to 2.3 ± 1.3 N/mm, p < 0.01), while fascicle length increased (7.9 ± 1.3 mm to 8.3 ± 1.5 mm, p < 0.005). Despite these altered mechanics, spindle firing did not significantly change, and showed weak correlations with muscle length, velocity, force, and yank (R2≤ 0.14). These results indicate that exoskeleton stiffness modifies fascicle dynamics without altering spindle firing. Previously proposed models of primary afferent firing did not sufficiently explain these results. This is the first in situ investigation of exoskeleton effects on primary afferent feedback during active contractions.
more »
« less
- Award ID(s):
- 2319710
- PAR ID:
- 10657292
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multiple proprioceptive signals, like those from muscle spindles, are thought to enable robust estimates of body configuration. Yet, it remains unknown whether spindle signals suffice to discriminate limb movements. Here, a simulated 4-musculotendon, 2-joint planar limb model produced repeated cycles of five end-point trajectories in forward and reverse directions, which generated spindle Ia and II afferent signals (proprioceptors for velocity and length, respectively) from each musculotendon. We find that cross-correlation of the 8D time series of raw firing rates (four Ia, four II) cannot discriminate among most movement pairs (∼ 29% accuracy). However, projecting these signals onto their 1stand 2ndprincipal components greatly improves discriminability of movement pairs (82% accuracy). We conclude that high-dimensional ensembles of muscle proprioceptors can discriminate among limb movements—but only after dimensionality reduction. This may explain the pre-processing of some afferent signals before arriving at the somatosensory cortex, such as processing of cutaneous signals at the cat’s cuneate nucleus.more » « less
-
Carson, Richard; Macefield, Vaughan (Ed.)ABSTRACT Previous studies established strong links between morphological characteristics of mammalian hindlimb muscles and their sensorimotor functions during locomotion. Less is known about the role of forelimb morphology in motor outputs and generation of sensory signals. Here, we measured morphological characteristics of 46 forelimb muscles from 6 cats. These characteristics included muscle attachments, physiological cross-sectional area (PCSA), fascicle length, etc. We also recorded full-body mechanics and EMG activity of forelimb muscles during level overground and treadmill locomotion in 7 and 16 adult cats of either sex, respectively. We computed forelimb muscle forces along with force- and length-dependent sensory signals mapped onto corresponding cervical spinal segments. We found that patterns of computed muscle forces and afferent activities were strongly affected by the muscle’s moment arm, PCSA, and fascicle length. Morphology of the shoulder muscles suggests distinct roles of the forelimbs in lateral force production and movements. Patterns of length-dependent sensory activity of muscles with long fibers (brachioradialis, extensor carpi radialis) closely matched patterns of overall forelimb length, whereas the activity pattern of biceps brachii matched forelimb orientation. We conclude that cat forelimb muscle morphology contributes substantially to locomotor function, particularly to control lateral stability and turning, rather than propulsion.more » « less
-
ABSTRACT Recent studies have demonstrated that muscle force is not determined solely by activation under dynamic conditions, and that length history has an important role in determining dynamic muscle force. Yet, the mechanisms for how muscle force is produced under dynamic conditions remain unclear. To explore this, we investigated the effects of muscle stiffness, activation and length perturbations on muscle force. First, submaximal isometric contraction was established for whole soleus muscles. Next, the muscles were actively shortened at three velocities. During active shortening, we measured muscle stiffness at optimal muscle length (L0) and the force response to time-varying activation and length perturbations. We found that muscle stiffness increased with activation but decreased as shortening velocity increased. The slope of the relationship between maximum force and activation amplitude differed significantly among shortening velocities. Also, the intercept and slope of the relationship between length perturbation amplitude and maximum force decreased with shortening velocity. As shortening velocities were related to muscle stiffness, the results suggest that length history determines muscle stiffness and the history-dependent muscle stiffness influences the contribution of activation and length perturbations to muscle force. A two-parameter viscoelastic model including a linear spring and a linear damper in parallel with measured stiffness predicted history-dependent muscle force with high accuracy. The results and simulations support the hypothesis that muscle force under dynamic conditions can be accurately predicted as the force response of a history-dependent viscoelastic material to length perturbations.more » « less
-
Meder, F.; Hunt, A.; Margheri, L.; Mura, A.; Mazzolai, B. (Ed.)A challenge in robotics is to control interactions with the environment by modulating the stiffness of a manipulator’s joints. Smart servos are controlled with proportional feedback gain that is analogous to torsional stiffness of an animal’s joint. In animals, antagonistic muscle groups can be temporarily coactivated to stiffen the joint to provide greater opposition to external forces. However, the joint properties for which coactivation increases the stiffness of the joint remain unknown. In this study, we explore possible mechanisms by building a mathematical model of the stick insect tibia actuated by two muscles, the extensor and flexor tibiae. Muscle geometry, passive properties, and active properties are extracted from the literature. Joint stiffness is calculated by tonically activating the antagonists, perturbing the joint from its equilibrium angle, and calculating the restoring moment generated by the muscles. No reflexes are modeled. We estimate how joint stiffness depends on parallel elastic element stiffness, the shape of the muscle activation curve, and properties of the force-length curve. We find that co-contracting antagonist muscles only stiffens the joint when the peak of the force-length curve occurs at a muscle length longer than that when the joint is at equilibrium and the muscle force versus activation curve is concave-up. We discuss how this information could be applied to the control of a smart servo actuator in a robot leg.more » « less
An official website of the United States government
