Abstract Estuarine exchange flow controls the salt balance and regulates biogeochemistry in an estuary. The Albemarle‐Pamlico estuarine system (APES) is the largest coastal lagoon in the U.S. and historically susceptible to a series of environmental issues including salt water intrusion and eutrophication, yet its estuarine exchange flow is poorly understood. Here, we investigate the estuarine exchange flow in the APES, its tributary estuaries (Pamlico and Neuse), and sub‐basin Albemarle Sound using the total exchange flow analysis framework based on results from a deterministic numerical model. We find the following: (a) Dynamics controlling estuarine exchange flow in the APES vary spatially and depend on timescales considered. At inlets, estuarine exchange flows respond to both tidal prism and residual water levels at weather‐to‐spring/neap timescales. At a long quasi‐steady timescale represented as annual means, estuarine exchange flow is dominated by barotropic flow. Within the tributary estuaries, estuarine exchange flows at timescales of wind periods are controlled by wind‐induced straining, whereas the quasi‐steady state condition is dominated by gravitational circulation. At Albemarle Sound, exchange flow is dominated by the residual water levels at weather‐to‐spring/neap timescales, while at quasi‐steady state it is controlled by barotropic flow. (b) At the quasi‐steady annual timescale, the salt content decreases with river discharge. At the weather‐to‐spring/neap timescales, salt content is insensitive to variations in estuarine exchange flow, except for within Albemarle Sound. (c) Estuarine exchange flow likely influences the biogeochemistry of the APES by playing a key role in regulating the flushing efficiency and material exchange, a role that has been previously overlooked.
more »
« less
This content will become publicly available on November 1, 2026
Impact of Estuarine Exchange Flow on Multiple Tracer Budgets in the Salish Sea
Abstract Estuarine exchange flow regulates aspects of estuarine biogeochemical processes; however, other tracer‐specific factors can also play an important role. Here, we analyze realistic simulations from a coupled physical‐biological model to quantify volume‐integrated budgets of heat, total nitrogen (TN), and dissolved oxygen (DO) in the Salish Sea and its sub‐basins. Our goal is to evaluate the role of exchange flow in shaping tracer budgets, extending beyond the traditionally emphasized salt budget in estuaries. The three budgets reveal that exchange flow is a consistently important term with a clear annual cycle, but its relative role differs across tracers. For heat, exchange flow‐driven cooling is primarily offset by atmospheric heating, with the two reaching opposing seasonal extremes in summer. For TN, seasonal variability is dominated by exchange flow, whereas the annual mean is dominated by inputs from rivers and wastewater outfalls, and a loss due to benthic denitrification. The DO budget is the most complex: sinks from exchange flow export and respiration are balanced by sources from photosynthesis and air‐sea transfer. Across all three budgets, the sign of the inflow‐outflow tracer concentration differences determines whether exchange flow imports or exports tracers. These concentration differences, which are strongly influenced by coastal wind conditions, set the distinct seasonality of the exchange flow budget terms, while variations in the exchange flow volume transport play a minor role. Our budget quantification approach, based on archived model output, can be extended to other tracers such as carbon and other estuaries for long‐term budget studies.
more »
« less
- Award ID(s):
- 2122420
- PAR ID:
- 10657379
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 130
- Issue:
- 11
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract It has been hypothesized that submesoscale flows play an important role in the vertical transport of climatically important tracers, due to their strong associated vertical velocities. However, the multi-scale, non-linear, and Lagrangian nature of transport makes it challenging to attribute proportions of the tracer fluxes to certain processes, scales, regions, or features. Here we show that criteria based on the surface vorticity and strain joint probability distribution function (JPDF) effectively decomposes the surface velocity field into distinguishable flow regions, and different flow features, like fronts or eddies, are contained in different flow regions. The JPDF has a distinct shape and approximately parses the flow into different scales, as stronger velocity gradients are usually associated with smaller scales. Conditioning the vertical tracer transport on the vorticity-strain JPDF can therefore help to attribute the transport to different types of flows and scales. Applied to a set of idealized Antarctic Circumpolar Current simulations that vary only in horizontal resolution, this diagnostic approach demonstrates that small-scale strain dominated regions that are generally associated with submesoscale fronts, despite their minuscule spatial footprint, play an outsized role in exchanging tracers across the mixed layer base and are an important contributor to the large-scale tracer budgets. Resolving these flows not only adds extra flux at the small scales, but also enhances the flux due to the larger-scale flows.more » « less
-
Abstract A realistic numerical model is used to study the circulation and mixing of the Salish Sea, a large, complex estuarine system on the United States and Canadian west coast. The Salish Sea is biologically productive and supports many important fisheries but is threatened by recurrent hypoxia and ocean acidification, so a clear understanding of its circulation patterns and residence times is of value. The estuarine exchange flow is quantified at 39 sections over 3 years (2017–2019) using the Total Exchange Flow method. Vertical mixing in the 37 segments between sections is quantified as opposing vertical transports: the efflux and reflux. Efflux refers to the rate at which deep, landward‐flowing water is mixed up to become part of the shallow, seaward‐flowing layer. Similarly, reflux refers to the rate at which upper layer water is mixed down to form part of the landward inflow. These horizontal and vertical transports are used to create a box model to explore residence times in a number of different sub‐volumes, seasons, and years. Residence times from the box model are generally found to be longer than those based on simpler calculations of flushing time. The longer residence times are partly due to reflux, and partly due to incomplete tracer homogenization in sub‐volumes. The methods presented here are broadly applicable to other estuaries.more » « less
-
Abstract The Salish Sea is a large, fjordal estuarine system opening onto the northeast Pacific Ocean. It develops a strong estuarine exchange flow that draws in nutrients from the ocean and flushes the system on timescales of several months. It is difficult to apply existing dynamical theories of estuarine circulation there because of the extreme bathymetric complexity. A realistic numerical model of the system was manipulated to have stronger and weaker tides to explore the sensitivity of the exchange flow to tides. This sensitivity was explored over two timescales: annual means and the spring‐neap. Two theories for the estuarine exchange flow are: (a) “gravitational circulation” where exchange is driven by the baroclinic pressure gradient due to along‐channel salinity variation, and (b) “tidal pumping” where tidal advection combined with flow separation forces the exchange. Past observations suggested gravitational circulation was of leading importance in the Salish Sea. We find here that the exchange flow increases with stronger tides, particularly in annual averages, suggesting it is controlled by tidal pumping. However, the landward salt transport due to the exchange flow decreases with stronger tides because greater mixing decreases the salinity difference between incoming and outgoing water. These results may be characteristic of estuarine systems that have rough topography and strong tides.more » « less
-
Abstract A salinity variance framework is used to study mixing in the Salish Sea, a large fjordal estuary. Output from a realistic numerical model is used to create salinity variance budgets for individual basins within the Salish Sea for 2017–19. The salinity variance budgets are used to quantify the mixing in each basin and estimate the numerical mixing, which is found to contribute about one-third of the total mixing in the model. Whidbey Basin has the most intense mixing, due to its shallow depth and large river flow. Unlike in most other estuarine systems previously studied using the salinity variance method, mixing in the Salish Sea is controlled by the river flow and does not exhibit a pronounced spring–neap cycle. A “mixedness” analysis is used to determine when mixed water is expelled from the estuary. The river flow is correlated with mixed water removal, but the coupling is not as tight as with the mixing. Because the mixing is so highly correlated with the river flow, the long-term average approximation M = Q r s out s in can be used to predict the mixing in the Salish Sea and Puget Sound with good accuracy, even without any temporal averaging. Over a 3-yr average, the mixing in Puget Sound is directly related to the exchange flow salt transport.more » « less
An official website of the United States government
