skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reliability, Security and Sustainability Challenges in 3D NAND Flash SSDs
This article explores the reliability, security, and sustainability of future 3D NAND flash SSDs. We discuss scaling challenges, their impact on reliability and radiation-induced vulnerabilities, along with potential countermeasures. Security concerns, including data sanitization and supply chain risks, are also discussed. Finally, we highlight sustainability issues related to storage carbon footprints. Our article emphasizes the need for innovative solutions to improve the resilience, security, and environmental impact of 3D NAND technology.  more » « less
Award ID(s):
2403540
PAR ID:
10657419
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Design & Test
ISSN:
2168-2356
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NAND flash memory-based SSDs have been widely adopted. The scaling of SSD has evolved from plannar (2D) to 3D stacking. For reliability and other reasons, the technology node in 3D NAND SSD is larger than in 2D, but data density can be increased via increasing bit-per-cell. In this work, we develop a novel reprogramming scheme for TLCs in 3D NAND SSD, such that a cell can be programmed and reprogrammed several times before it is erased. Such reprogramming can improve the endurance of a cell and the speed of programming, and increase the amount of bits written in a cell per program/erase cycle, i.e., effective capacity. Our work is the first to perform a real 3D NAND SSD test to validate the feasibility of the reprogram operation. From the collected data, we derive the restrictions of performing reprogramming due to reliability challenges. Furthermore, a reprogrammable SSD (ReSSD) is designed to structure reprogram operations. ReSSD is evaluated in a case study in RAID 5 system (RSS-RAID). Experimental results show that RSS-RAID can improve the endurance by 35.7%, boost write performance by 15.9%, and increase effective capacity by 7.71%, with negligible overhead compared with conventional 3D SSD-based RAID 5 system. 
    more » « less
  2. Instant data deletion (or sanitization) in NAND flash devices is essential for achieving data privacy, but it remains challenging due to the mismatch between erase and write granularities, which leads to high overhead and accelerated wear. While page-overwrite-based instant data sanitization has proven effective for 2D NAND, its applicability to 3D NAND is limited due to the unique sub-block architecture. In this study, we experimentally evaluate page-overwrite-based sanitization on commercial 3D NAND flash memory chips and uncover significant threshold voltage disturbances in erased cells on adjacent pages within the same layer but across different sub-blocks. Our key findings reveal that page-overwrite sanitization increases the median raw bit error rate (RBER) beyond correction limits (exceeding 0.93%) in Floating-Gate (FG) Single-Level Cell (SLC) technology, whereas Charge-Trap (CT) SLC 3D NAND flash memories exhibit higher robustness. In Triple-Level Cell (TLC) 3D NAND, page-overwrite sanitization proves impractical, with the median RBER of ∼13% for FG and ∼5% for CT devices. To overcome these challenges, we proposePULSE, a low-disturbance sanitization technique that balances sanitization efficiency ({{\eta }_{san}}) and data integrity (RBER). Experimental results show that PULSE eliminates RBER increases in SLC devices and reduces the median RBER to below 0.57% for FG and 0.79% for CT in fresh TLC blocks, demonstrating its practical viability for 3D NAND flash sanitization. 
    more » « less
  3. The current techniques and tools for collecting, aggregating, and reporting verifiable sustainability data are vulnerable to cyberattacks and misuse, requiring new security and privacy-preserving solutions. This article outlines security challenges and research directions for addressing these requirements. 
    more » « less
  4. Electrification of the transportation industry introduces far-reaching paradigm shifts in sustainability, energy dependency, and manufacturing sectors. The ultimate success of this transition, in part, depends on sustainable development of highly efficient, reliable, and affordable electric propulsion systems. This article provides an overview on the existing practices and future trends in magnetic design, power electronic converter, and control/safety for electric propulsion systems. Efficiency, torque density, cost, noise and vibration, and reliability are used as figures of merit in this study. Our investigation identifies the areas of research with the highest impact and the highest urgency. Although several challenges have been identified, these areas all provide great opportunities for future research in this emerging industry. 
    more » « less
  5. We propose an extremely dense, energy-efficient mixed-signal vector-by-matrix-multiplication (VMM) circuits based on the existing 3D-NAND flash memory blocks, without any need for their modification. Such compatibility is achieved using a time-domain-encoded VMM design. We have performed rigorous simulations of such a circuit, taking into account non-idealities such as drain-induced barrier lowering, capacitive coupling, charge injection, parasitics, process variations, and noise. Our results, for example, show that the 4-bit VMM of 200-element vectors, using the commercially available 64-layer gate-all-around macaroni-type 3D-NAND memory blocks designed in the 55-nm technology node, may provide an unprecedented area efficiency of 0.14 µm2/byte and energy efficiency of ~11 fJ/Op, including the input/output and other peripheral circuitry overheads. 
    more » « less