This content will become publicly available on July 4, 2026
Research as Care: A Reflection on Incorporating the Ethics of Care in Design Research with People Living with Dementia
- Award ID(s):
- 2020194
- PAR ID:
- 10657454
- Publisher / Repository:
- ACM
- Date Published:
- Page Range / eLocation ID:
- 3013 to 3027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Data sharing is increasingly an expectation in health research as part of a general move toward more open sciences. In the United States, in particular, the implementation of the 2023 National Institutes of Health Data Management and Sharing Policy has made it clear that qualitative studies are not exempt from this data sharing requirement. Recognizing this trend, the Palliative Care Research Cooperative Group (PCRC) realized the value of creating a de-identified qualitative data repository to complement its existing de-identified quantitative data repository. The PCRC Data Informatics and Statistics Core leadership partnered with the Qualitative Data Repository (QDR) to establish the first serious illness and palliative care qualitative data repository in the U.S. We describe the processes used to develop this repository, called the PCRC-QDR, as well as our outreach and education among the palliative care researcher community, which led to the first ten projects to share the data in the new repository. Specifically, we discuss how we co-designed the PCRC-QDR and created tailored guidelines for depositing and sharing qualitative data depending on the original research context, establishing uniform expectations for key components of relevant documentation, and the use of suitable access controls for sensitive data. We also describe how PCRC was able to leverage its existing community to recruit and guide early depositors and outline lessons learned in evaluating the experience. This work advances the establishment of best practices in qualitative data sharing.more » « less
-
Abstract Today, patients are demanding a newer and more sophisticated health care system, one that is more personalized and matches the speed of modern life. For the latency and energy efficiency requirements to be met for a real‐time collection and analysis of health data, an edge computing environment is the answer, combined with 5G speeds and modern computing techniques. Previous health care surveys have focused on new fog architecture and sensor types, which leaves untouched the aspect of optimal computing techniques, such as encryption, authentication, and classification that are used on the devices deployed in an edge computing architecture. This paper aims first to survey the current and emerging edge computing architectures and techniques for health care applications, as well as to identify requirements and challenges of devices for various use cases. Edge computing application primarily focuses on the classification of health data involving vital sign monitoring and fall detection. Other low‐latency applications perform specific symptom monitoring for diseases, such as gait abnormalities in Parkinson's disease patients. We also present our exhaustive review on edge computing data operations that include transmission, encryption, authentication, classification, reduction, and prediction. Even with these advantages, edge computing has some associated challenges, including requirements for sophisticated privacy and data reduction methods to allow comparable performance to their Cloud‐based counterparts, but with lower computational complexity. Future research directions in edge computing for health care have been identified to offer a higher quality of life for users if addressed.more » « less
An official website of the United States government
