skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Retrieve and summarize the Everglades Wading Bird Project data
The wader package provides functions to download and generate summaries for the count, nesting, indicator, and weather data from the Wading Bird Project. The Wading Bird Project is a long-term (and ongoing) monitoring site in the Everglades water conservation areas. The raw data files can be found at https://github.com/weecology/evergladeswadingbird.  more » « less
Award ID(s):
2326954
PAR ID:
10657600
Author(s) / Creator(s):
; ;
Publisher / Repository:
Zenodo
Date Published:
Edition / Version:
v0.0.2
Subject(s) / Keyword(s):
ecology time-series long-term
Format(s):
Medium: X
Right(s):
MIT
Sponsoring Org:
National Science Foundation
More Like this
  1. Ecosystem restoration often aims to create environmental conditions that support communities of native organisms resembling those prior to alteration by humans. One focus of the multi-decade multi-billion-dollar Florida Everglades restoration effort is to recreate hydrologic conditions in Everglades National Park and associated pulses of aquatic animal prey to support the large colonies of seasonally nesting wading birds that are iconic predators in the ecosystem. Recent studies indicate that invasion of predatory Asian Swamp Eels (Monopterus albus/javanensis) has disrupted the hydrology-mediated production of crayfish and some small fishes in the drainage of first invasion (circa 2012). Here we used a complete community dataset of fish and decapods to report changes to the aquatic community diversity, composition, and biomass of prey produced for wading birds. After the establishment of swamp eels in Taylor Slough (Everglades National Park) average fish and decapod richness declined by 25% and communities shifted to a new state dominated by grass shrimp and a few species of small fishes. Swamp eels differentially reduced the production of primary wading bird resources; while there has been a 68% decline in total small fish and decapod biomass, the biomass of the most important prey species for nesting wading birds declined 80%. If similar impacts follow the spread of swamp eels into other major drainages of the Everglades, the invasion may precipitate an ecosystem collapse—fundamentally simplifying and restructuring the aquatic communities of this vast wetland ecosystem and limiting the trophic support for wading bird breeding aggregations that are important indicators for ecological restoration. 
    more » « less
  2. null (Ed.)
    Abstract Background Mobile animals transport nutrients and propagules across habitats, and are crucial for the functioning of food webs and for ecosystem services. Human activities such as urbanization can alter animal movement behavior, including site fidelity and resource use. Because many urban areas are adjacent to natural sites, mobile animals might connect natural and urban habitats. More generally, understanding animal movement patterns in urban areas can help predict how urban expansion will affect the roles of highly mobile animals in ecological processes. Methods Here, we examined movements by a seasonally nomadic wading bird, the American white ibis ( Eudocimus albus ), in South Florida, USA. White ibis are colonial wading birds that forage on aquatic prey; in recent years, some ibis have shifted their behavior to forage in urban parks, where they are fed by people. We used a spatial network approach to investigate how individual movement patterns influence connectivity between urban and non-urban sites. We built a network of habitat connectivity using GPS tracking data from ibis during their non-breeding season and compared this network to simulated networks that assumed individuals moved indiscriminately with respect to habitat type. Results We found that the observed network was less connected than the simulated networks, that urban-urban and natural-natural connections were strong, and that individuals using urban sites had the least-variable habitat use. Importantly, the few ibis that used both urban and natural habitats contributed the most to connectivity. Conclusions Habitat specialization in urban-acclimated wildlife could reduce the exchange of propagules and nutrients between urban and natural areas, which has consequences both for beneficial effects of connectivity such as gene flow and for detrimental effects such as the spread of contaminants or pathogens. 
    more » « less
  3. This study examines temporal and spatial dynamics in the fish community of the oligohaline to mesohaline reaches of ecotonal creeks along the southwest region of Everglades National Park. Collections of fish in SW ENP during 2004 - 2014 across Rookery Branch and Tarpon Bay. Sampling started in the wet season of 2004, and has been conducted three times per year at these approximate times: November (wet season); February (transition); and April (dry season). Electrofishing samples were processed in the field, and all species (except for non-natives) were returned live at the point of collection. In the Rookery Branch region, fish abundance varies markedly yearly and seasonally. Catches peak in the drier months, reflecting a pulse of movement by freshwater taxa into creeks as marshes upstream dry. The timing of this pulse is closely tied to the pattern of water recession in upstream marshes, and has important ramifications for wading bird prey availability. 
    more » « less
  4. Qian, Anita; Xu, Xiaofeng (Ed.)
    Birds play a crucial role in maintaining the balance and health of ecosystems worldwide, with their significance extending from ecological functions to cultural symbolism. Ecologically, birds contribute to pest control by preying on insects, regulating populations, and mitigating agricultural damage. They also aid in seed dispersal and pollination, facilitating vegetation growth and plant reproduction. Furthermore, birds serve as environmental indicators, reflecting broader ecological shifts. Recently, the National Ecological Observation Network (NEON) has undertaken the task of monitoring bird populations across various U.S. ecosystems. The project aims to decipher bird abundance patterns during peak growing seasons, synthesizing data on variables such as bird counts, beetle populations, latitude, longitude, tree dimensions, and vegetation productivity during 2017-2022 sourced from NEON databases. The findings reveal that bird counts decrease from low to high latitudes, with both beetles and vegetation productivity positively influencing bird abundance, while tree breast height diameter shows weak correlation. Strong inter-annual variations in bird counts were observed nationwide. Both correlation analysis and structural equation modeling underscore vegetation's pivotal role in bird abundance. In essence, the developed bird count data system offers valuable insights into bird and ecosystem health, aiding communities in understanding and preserving these vital ecosystems. 
    more » « less
  5. Abstract The challenges of monitoring wildlife often limit the scales and intensity of the data that can be collected. New technologies—such as remote sensing using unoccupied aircraft systems (UASs)—can collect information more quickly, over larger areas, and more frequently than is feasible using ground‐based methods. While airborne imaging is increasingly used to produce data on the location and counts of individuals, its ability to produce individual‐based demographic information is less explored. Repeat airborne imagery to generate an imagery time series provides the potential to track individuals over time to collect information beyond one‐off counts, but doing so necessitates automated approaches to handle the resulting high‐frequency large‐spatial scale imagery. We developed an automated time‐series remote sensing approach to identifying wading bird nests in the Everglades ecosystem of Florida, USA to explore the feasibility and challenges of conducting time‐series based remote sensing on mobile animals at large spatial scales. We combine a computer vision model for detecting birds in weekly UAS imagery of colonies with biology‐informed algorithmic rules to generate an automated approach that identifies likely nests. Comparing the performance of these automated approaches to human review of the same imagery shows that our primary approach identifies nests with comparable performance to human review, and that a secondary approach designed to find quick‐fail nests resulted in high false‐positive rates. We also assessed the ability of both human review and our primary algorithm to find ground‐verified nests in UAS imagery and again found comparable performance, with the exception of nests that fail quickly. Our results showed that automating nest detection, a key first step toward estimating nest success, is possible in complex environments like the Everglades and we discuss a number of challenges and possible uses for these types of approaches. 
    more » « less