This paper is on a pedestrian collision warning and avoidance system for road vehicles based on V2X communication. In cases where the presence and location of a pedestrian or group of pedestrians cannot be determined using line-of-sight sensors like camera, radar and lidar, signals from pedestrians' smartphone apps are used to detect and localize them relative to the road vehicle through the DSRC radio used for V2X communication. A hardware-in-the-loop setup using a validated automated driving vehicle model in the high fidelity vehicle dynamics simulation program Carsim Real Time with Sensors and Traffic is used along with two DSRC modems emulating the vehicle and pedestrian communications in the development and initial experimental testing of this method. The vehicle either stops or, if possible, goes around the pedestrians in a socially acceptable manner. The elastic band method is used to locally modify the vehicle trajectory in real time when pedestrians are detected on the nearby path of the vehicle. The effectiveness of the proposed method is demonstrated using hardware-in-the-loop simulations.
more »
« less
This content will become publicly available on September 1, 2026
A Co-Operative Perception System for Collision Avoidance Using C-V2X and Client–Server-Based Object Detection
With the recent 5G communication technology deployment, Cellular Vehicle-to-Everything (C-V2X) significantly enhances road safety by enabling real-time exchange of critical traffic information among vehicles, pedestrians, infrastructure, and networks. However, further research is required to address real-time application latency and communication reliability challenges. This paper explores integrating cutting-edge C-V2X technology with environmental perception systems to enhance safety at intersections and crosswalks. We propose a multi-module architecture combining C-V2X with state-of-the-art perception technologies, GPS mapping methods, and the client–server module to develop a co-operative perception system for collision avoidance. The proposed system includes the following: (1) a hardware setup for C-V2X communication; (2) an advanced object detection module leveraging Deep Neural Networks (DNNs); (3) a client–server-based co-operative object detection framework to overcome computational limitations of edge computing devices; and (4) a module for mapping GPS coordinates of detected objects, enabling accurate and actionable GPS data for collision avoidance—even for detected objects not equipped with C-V2X devices. The proposed system was evaluated through real-time experiments at the GMMRC testing track at Kettering University. Results demonstrate that the proposed system enhances safety by broadcasting critical obstacle information with an average latency of 9.24 milliseconds, allowing for rapid situational awareness. Furthermore, the proposed system accurately provides GPS coordinates for detected obstacles, which is essential for effective collision avoidance. The technology integration in the proposed system offers high data rates, low latency, and reliable communication, which are key features that make it highly suitable for C-V2X-based applications.
more »
« less
- Award ID(s):
- 2128346
- PAR ID:
- 10657826
- Editor(s):
- Martín-Sacristán, David; Garcia-Roger, David
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 25
- Issue:
- 17
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 5544
- Subject(s) / Keyword(s):
- AD ADAS C-V2X client–server protocol GPS mapping object detection DNN
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Advances in deep learning have revolutionized cyber‐physical applications, including the development of autonomous vehicles. However, real‐world collisions involving autonomous control of vehicles have raised significant safety concerns regarding the use of deep neural networks (DNNs) in safety‐critical tasks, particularly perception. The inherent unverifiability of DNNs poses a key challenge in ensuring their safe and reliable operation. In this work, we propose perception simplex ( ), a fault‐tolerant application architecture designed for obstacle detection and collision avoidance. We analyse an existing LiDAR‐based classical obstacle detection algorithm to establish strict bounds on its capabilities and limitations. Such analysis and verification have not been possible for deep learning‐based perception systems yet. By employing verifiable obstacle detection algorithms, identifies obstacle existence detection faults in the output of unverifiable DNN‐based object detectors. When faults with potential collision risks are detected, appropriate corrective actions are initiated. Through extensive analysis and software‐in‐the‐loop simulations, we demonstrate that provides deterministic fault tolerance against obstacle existence detection faults, establishing a robust safety guarantee.more » « less
-
Collaborative perception enables autonomous driving vehicles to share sensing or perception data via broadcast-based vehicle-to-everything (V2X) communication technologies such as Cellular-V2X (C-V2X), hoping to enable accurate perception in face of inaccurate perception results by each individual vehicle. Nevertheless, the V2X communication channel remains a significant bottleneck to the performance and usefulness of collaborative perception due to limited bandwidth and ad hoc communication scheduling. In this paper, we explore challenges and design choices for V2X-based collaborative perception, and propose an architecture that lever-ages the power of edge computing such as road-side units for central communication scheduling. Using NS-3 simulations, we show the performance gap between distributed and centralized C-V2X scheduling in terms of achievable throughput and communication efficiency, and explore scenarios where edge assistance is beneficial or even necessary for collaborative perception.more » « less
-
Abstract Vehicle‐to‐Everything (V2X) communication has been proposed as a potential solution to improve the robustness and safety of autonomous vehicles by improving coordination and removing the barrier of non‐line‐of‐sight sensing. Cooperative Vehicle Safety (CVS) applications are tightly dependent on the reliability of the underneath data system, which can suffer from loss of information due to the inherent issues of their different components, such as sensors' failures or the poor performance of V2X technologies under dense communication channel load. Particularly, information loss affects the target classification module and, subsequently, the safety application performance. To enable reliable and robust CVS systems that mitigate the effect of information loss, a Context‐Aware Target Classification (CA‐TC) module coupled with a hybrid learning‐based predictive modeling technique for CVS systems is proposed. The CA‐TC consists of two modules: a Context‐Aware Map (CAM), and a Hybrid Gaussian Process (HGP) prediction system. Consequently, the vehicle safety applications use the information from the CA‐TC, making them more robust and reliable. The CAM leverages vehicles' path history, road geometry, tracking, and prediction; and the HGP is utilized to provide accurate vehicles' trajectory predictions to compensate for data loss (due to communication congestion) or sensor measurements' inaccuracies. Based on offline real‐world data, a finite bank of driver models that represent the joint dynamics of the vehicle and the drivers' behavior is learned. Offline training and online model updates are combined with on‐the‐fly forecasting to account for new possible driver behaviors. Finally, the framework is validated using simulation and realistic driving scenarios to confirm its potential in enhancing the robustness and reliability of CVS systems.more » « less
-
This paper investigates the resilience of perception-based multi-robot coordination with wireless communication to online adversarial perception. A systematic study of this problem is essential for many safety-critical robotic applications that rely on the measurements from learned perception modules. We consider a (small) team of quadrotor robots that rely only on an Inertial Measurement Unit (IMU) and the visual data measurements obtained from a learned multi-task perception module (e.g., object detection) for downstream tasks, including relative localization and coordination. We focus on a class of adversarial perception attacks that cause misclassification, mislocalization, and latency. We propose that the effects of adversarial misclassification and mislocalization can be modeled as sporadic (intermittent) and spurious measurement data for the downstream tasks. To address this, we present a framework for resilience analysis of multi-robot coordination with adversarial measurements. The framework integrates data from Visual-Inertial Odometry (VIO) and the learned perception model for robust relative localization and state estimation in the presence of adversarially sporadic and spurious measurements. The framework allows for quantifying the degradation in system observability and stability in relation to the success rate of adversarial perception. Finally, experimental results on a multi-robot platform demonstrate the real-world applicability of our methodology for resource-constrained robotic platforms.more » « less
An official website of the United States government
