We consider the problem of inferring the conditional independence graph (CIG) of a high-dimensional stationary, multivariate long-range dependent (LRD) Gaussian time series. In a time series graph, each component of the vector series is represented by a distinct node, and associations between components are represented by edges between the corresponding nodes. In a recent work on graphical modeling of short-range dependent (SRD) Gaussian time series, the problem was cast as one of multi-attribute graph estimation for random vectors where a vector is associated with each node of the graph. At each node, the associated random vector consists of a time series component and its delayed copies. A theoretical analysis based on short-range dependence has been given in Tugnait (2022 ICASSP). In this paper we analyze this approach for LRD Gaussian time series and provide consistency results regarding convergence in the Frobenius norm of the inverse covariance matrix associated with the multi-attribute graph.
more »
« less
This content will become publicly available on November 6, 2027
Conditionally specified stochastic processes for graphical modeling of stationary multivariate time series
Graphical models are ubiquitous for summarizing conditional relations in multivariate data. In many applications involving multivariate time series, it is of interest to learn an interaction graph that treats each individual time series as nodes of the graph, with the presence of an edge between two nodes signifying conditional dependence given the others. Typically, the partial covariance is used as a measure of conditional dependence. However, in many applications, the outcomes may not be Gaussian and/or could be a mixture of different outcomes. For such time series using the partial covariance as a measure of conditional dependence may be restrictive. In this article, we propose a broad class of time series models which are specifically designed to succinctly encode process-wide conditional independence in its parameters. For each univariate component in the time series, we model its conditional distribution with a distribution from the exponential family. We develop a notion of process-wide compatibility under which such conditional specifications can be stitched together to form a well-defined strictly stationary multivariate time series. We call this construction a conditionally exponential stationary graphical model (CEStGM). A central quantity underlying CEStGM is a positive kernel which we call the interaction kernel. Spectral properties of such positive kernel operators constitute a core technical foundation of this work. We establish process-wide local and global Markov properties of CEStGM exploiting a Hammersley-Clifford type decomposition of the interaction kernel. Further, we study various probabilistic properties of CEStGM and show that it is geometrically mixing. An approximate Gibbs sampler is also developed to simulate sample paths of CEStGM.
more »
« less
- Award ID(s):
- 2210726
- PAR ID:
- 10657847
- Publisher / Repository:
- Arxiv
- Date Published:
- Journal Name:
- Under submission
- ISSN:
- i do not know yet
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
For multivariate stationary time series many important properties, such as partial correlation, graphical models and autoregressive representations are encoded in the inverse of its spectral density matrix. This is not true for nonstationary time series, where the pertinent information lies in the inverse infinite dimensional covariance matrix operator associated with the multivariate time series. This necessitates the study of the covariance of a multivariate nonstationary time series and its relationship to its inverse. We show that if the rows/columns of the infinite dimensional covariance matrix decay at a certain rate then the rate (up to a factor) transfers to the rows/columns of the inverse covariance matrix. This is used to obtain a nonstationary autoregressive representation of the time series and a Baxter-type bound between the parameters of the autoregressive infinite representation and the corresponding finite autoregressive projection. The aforementioned results lay the foundation for the subsequent analysis of locally stationary time series. In particular, we show that smoothness properties on the covariance matrix transfer to (i) the inverse covariance (ii) the parameters of the vector autoregressive representation and (iii) the partial covariances. All results are set up in such a way that the constants involved depend only on the eigenvalue of the covariance matrix and can be applied in the high-dimensional settings with non-diverging eigenvalues.more » « less
-
null (Ed.)We consider the problem of inferring the conditional independence graph (CIG) of a high-dimensional stationary multivariate Gaussian time series. A p-variate Gaussian time series graphical model associated with an undirected graph with p vertices is defined as the family of time series that obey the conditional independence restrictions implied by the edge set of the graph. A sparse-group lasso-based frequency-domain formulation of the problem has been considered in the literature where the objective is to estimate the inverse power spectral density (PSD) of the data via optimization of a sparse-group lasso based penalized log-likelihood cost function that is formulated in the frequency-domain. The CIG is then inferred from the estimated inverse PSD. In this paper we establish sufficient conditions for consistency of the inverse PSD estimator resulting from the sparse-group graphical lasso-based approach.more » « less
-
We consider the problem of estimating the structure of an undirected weighted sparse graphical model of multivariate data under the assumption that the underlying distribution is multivariate totally positive of order 2, or equivalently, all partial correlations are non-negative. Total positivity holds in several applications. The problem of Gaussian graphical model learning has been widely studied without the total positivity assumption where the problem can be formulated as estimation of the sparse precision matrix that encodes conditional dependence between random variables associated with the graph nodes. An approach that imposes total positivity is to assume that the precision matrix obeys the Laplacian constraints which include constraining the off-diagonal elements of the precision matrix to be non-positive. In this paper we investigate modifications to widely used penalized log-likelihood approaches to enforce total positivity but not the Laplacian structure. An alternating direction method of multipliers (ADMM) algorithm is presented for constrained optimization under total positivity and lasso as well as adaptive lasso penalties. Numerical results based on synthetic data show that the proposed constrained adaptive lasso approach significantly outperforms existing Laplacian-based approaches, both statistical and smoothness-based non-statistical.more » « less
-
Summary For multivariate spatial Gaussian process models, customary specifications of cross-covariance functions do not exploit relational inter-variable graphs to ensure process-level conditional independence between the variables. This is undesirable, especially in highly multivariate settings, where popular cross-covariance functions, such as multivariate Matérn functions, suffer from a curse of dimensionality as the numbers of parameters and floating-point operations scale up in quadratic and cubic order, respectively, with the number of variables. We propose a class of multivariate graphical Gaussian processes using a general construction called stitching that crafts cross-covariance functions from graphs and ensures process-level conditional independence between variables. For the Matérn family of functions, stitching yields a multivariate Gaussian process whose univariate components are Matérn Gaussian processes, and which conforms to process-level conditional independence as specified by the graphical model. For highly multivariate settings and decomposable graphical models, stitching offers massive computational gains and parameter dimension reduction. We demonstrate the utility of the graphical Matérn Gaussian process to jointly model highly multivariate spatial data using simulation examples and an application to air-pollution modelling.more » « less
An official website of the United States government
