Context.Galactic chemical evolution (GCE) models aim to bring together stellar yields and galactic evolution models to make predictions for the chemical evolution of real stellar environments. Until recently, stellar yields accounting for binary stellar evolution were unavailable, leading to an inability for GCE calculations to account for most binary stellar evolution effects. Fortunately, effective stellar yields that account for binary stellar evolution at a population level can be pre-computed and then used as if they were single yields. Aims.We present a framework for the computation of effective stellar yields that accounts for a mixed population of binary and single stars under an adjustable mix of binary evolution settings: the binary fraction, the accretion efficiencies of winds, Roche-lobe overflow, and supernovae. We emphasise the critical need for more complete yield coverage of the binary nucleosynthesis and evolution, without which the ability to make accurate predictions on the true role of binarity on GCE calculations is hamstrung. We also provide clear guidelines for future stellar modelling works to ensure their results are maximally useful to the wider community. Methods.We compute effective stellar yields using detailed binary stellar yields accounting for binary induced mass-loss from a solar-metallicity donor star. We study the effect of varying the binary mixture and accretion efficiencies, and consider a range of models for the treatment of accreted material on the secondary in detail. Results.In the absence of detailed binary yields for the secondary, we put forth a model for the composition of accreted material that preserves the signature of the primary’s nuclear processing within the post-mass-transfer secondary yields. This model includes special treatment for isotopes of the light elements Li, Be, and B and accreted radioisotopes. Among the binary parameters, we find that the binary fraction, which determines the ratio of binary and single star systems, has the most significant effect on the effective stellar yields, with widespread impact across most isotopes. In contrast, varying the accretion efficiencies produces comparatively minor changes. We also find that the binary fraction has a significant influence on the logarithmic elemental abundance ratios relative to H present in the effective yield; this impact is the largest for the lower-mass primaries. Conclusions.Comprehensive coverage of binary systems is essential for advancing our understanding of the role of binary stellar evolution in galactic chemical evolution. Priority areas include low-mass stellar evolution, binary mergers, and supernova yields coupled with the evolution of their binary progenitors with nuclear post-processing. The low-metallicity regime is also largely unexplored, offering great opportunity for novel and impactful research in this area.
more »
« less
This content will become publicly available on October 29, 2026
Unexpected Stellar Chemistry as a Marker of Atypical Stellar Evolution?
Accurate stellar ages are crucial for galactic archeology, but cannot be measured directly. Evolved red giant stars offer a solution, since their lifetimes can be inferred from their masses. Mass measurements often rely on mass proxies, such as the surface carbon-to-nitrogen ratio ([C/N]) after the first dredge-up. But this relationship is not consistent for all stars. Understanding the systematics behind these [C/N] outliers is essential for improving mass and subsequent age measurements. We analyze additional elemental abundances, such as those of s-process elements, that may indicate binary interactions. We find significant differences between typical and outlier stars, suggesting atypical or binary evolution histories for outlier stars. By accounting for such complexities in this method, more accurate stellar ages and a clearer picture of the Milky Way’s formation and evolution will be understood.
more »
« less
- Award ID(s):
- 2206542
- PAR ID:
- 10657941
- Publisher / Repository:
- Research Notes of the American Astronomical Society
- Date Published:
- Journal Name:
- Research Notes of the AAS
- Volume:
- 9
- Issue:
- 10
- ISSN:
- 2515-5172
- Page Range / eLocation ID:
- 289
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We measure rotational broadening in spectra taken by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey to characterize the relationship between stellar multiplicity and rotation. We create a sample of 2786 giants and 24 496 dwarfs with stellar parameters and multiple radial velocities from the APOGEE pipeline, projected rotation speeds vsin i determined from our own pipeline, and distances, masses, and ages measured by Sanders & Das. We use the statistical distribution of the maximum shift in the radial velocities, ΔRVmax, as a proxy for the close binary fraction to explore the interplay between stellar evolution, rotation, and multiplicity. Assuming that the minimum orbital period allowed is the critical period for Roche Lobe overflow and rotational synchronization, we calculate theoretical upper limits on expected vsin i and ΔRVmax values. These expectations agree with the positive correlation between the maximum ΔRVmax and vsin i values observed in our sample as a function of log(g). We find that the fast rotators in our sample have a high occurrence of short-period [log(P/d) ≲ 4] companions. We also find that old, rapidly rotating main-sequence stars have larger completeness-corrected close binary fractions than their younger peers. Furthermore, rapidly rotating stars with large ΔRVmax consistently show differences of 1–10 Gyr between the predicted gyrochronological and measured isochronal ages. These results point towards a link between rapid rotation and close binarity through tidal interactions. We conclude that stellar rotation is strongly correlated with stellar multiplicity in the field, and caution should be taken in the application of gyrochronology relations to cool stars.more » « less
-
Abstract Accurate stellar ages are essential for our understanding of the star formation history of the Milky Way and Galactic chemical evolution, as well as to constrain exoplanet formation models. Gyrochronology, a relationship between stellar rotation and age, appears to offer a reliable age indicator for main-sequence (MS) stars over the mass range of approximately 0.6–1.3M⊙. Those stars lose their angular momentum due to magnetic braking and as a result their rotation speeds decrease with age. Although current gyrochronology relations have been fairly well tested for young MS stars with masses greater than 1M⊙, primarily in young open clusters, insufficient tests exist for older and lower mass MS stars. Binary stars offer the potential to expand and fill in the range of ages and metallicity over which gyrochronology can be empirically tested. In this paper, we demonstrate a Monte Carlo approach to evaluate gyrochronology models using binary stars. As examples, we used five previously published wide binary pairs. We also demonstrate a Monte Carlo approach to assess the precision and accuracy of ages derived from each gyrochronology model. For the traditional Skumanich models, the age uncertainties areσage/age = 15%–20% for stars withB−V= 0.65 andσage/age = 5%–10% for stars withB−V= 1.5 and rotation periodP≤ 20 days.more » « less
-
Abstract Understanding the evolution of massive binary stars requires accurate estimates of their masses. This understanding is critically important because massive star evolution can potentially lead to gravitational-wave sources such as binary black holes or neutron stars. For Wolf–Rayet (WR) stars with optically thick stellar winds, their masses can only be determined with accurate inclination angle estimates from binary systems which have spectroscopic M sin i measurements. Orbitally phased polarization signals can encode the inclination angle of binary systems, where the WR winds act as scattering regions. We investigated four Wolf–Rayet + O star binary systems, WR 42, WR 79, WR 127, and WR 153, with publicly available phased polarization data to estimate their masses. To avoid the biases present in analytic models of polarization while retaining computational expediency, we used a Monte Carlo radiative-transfer model accurately emulated by a neural network. We used the emulated model to investigate the posterior distribution of the parameters of our four systems. Our mass estimates calculated from the estimated inclination angles put strong constraints on existing mass estimates for three of the systems, and disagree with the existing mass estimates for WR 153. We recommend a concerted effort to obtain polarization observations that can be used to estimate the masses of WR binary systems and increase our understanding of their evolutionary paths.more » « less
-
Context. With the advent of space-based asteroseismology, determining accurate properties of red-giant stars using their observed oscillations has become the focus of many investigations due to their implications in a variety of fields in astrophysics. Stellar models are fundamental in predicting quantities such as stellar age, and their reliability critically depends on the numerical implementation of the physics at play in this evolutionary phase. Aims. We introduce the Aarhus red giants challenge, a series of detailed comparisons between widely used stellar evolution and oscillation codes that aim to establish the minimum level of uncertainties in properties of red giants arising solely from numerical implementations. We present the first set of results focusing on stellar evolution tracks and structures in the red-giant-branch (RGB) phase. Methods. Using nine state-of-the-art stellar evolution codes, we defined a set of input physics and physical constants for our calculations and calibrated the convective efficiency to a specific point on the main sequence. We produced evolutionary tracks and stellar structure models at a fixed radius along the red-giant branch for masses of 1.0 M ⊙ , 1.5 M ⊙ , 2.0 M ⊙ , and 2.5 M ⊙ , and compared the predicted stellar properties. Results. Once models have been calibrated on the main sequence, we find a residual spread in the predicted effective temperatures across all codes of ∼20 K at solar radius and ∼30–40 K in the RGB regardless of the considered stellar mass. The predicted ages show variations of 2–5% (increasing with stellar mass), which we attribute to differences in the numerical implementation of energy generation. The luminosity of the RGB-bump shows a spread of about 10% for the considered codes, which translates into magnitude differences of ∼0.1 mag in the optical V -band. We also compare the predicted [C/N] abundance ratio and find a spread of 0.1 dex or more for all considered masses. Conclusions. Our comparisons show that differences at the level of a few percent still remain in evolutionary calculations of red giants branch stars despite the use of the same input physics. These are mostly due to differences in the energy generation routines and interpolation across opacities, and they call for further investigation on these matters in the context of using properties of red giants as benchmarks for astrophysical studies.more » « less
An official website of the United States government
