SUMMARY The complexity of environmental conditions encountered by plants in the field, or in nature, is gradually increasing due to anthropogenic activities that promote global warming, climate change, and increased levels of pollutants. While in the past it seemed sufficient to study how plants acclimate to one or even two different stresses affecting them simultaneously, the complex conditions developing on our planet necessitate a new approach of studying stress in plants: Acclimation to multiple stress conditions occurring concurrently or consecutively (termed, multifactorial stress combination [MFSC]). In an initial study of the plant response to MFSC, conducted withArabidopsis thalianaseedlings subjected to an MFSC of six different abiotic stresses, it was found that with the increase in the number and complexity of different stresses simultaneously impacting a plant, plant growth and survival declined, even if the effects of each stress involved in such MFSC on the plant was minimal or insignificant. In three recent studies, conducted with different crop plants, MFSC was found to have similar effects on a commercial rice cultivar, a maize hybrid, tomato, and soybean, causing significant reductions in growth, biomass, physiological parameters, and/or yield traits. As the environmental conditions on our planet are gradually worsening, as well as becoming more complex, addressing MFSC and its effects on agriculture and ecosystems worldwide becomes a high priority. In this review, we address the effects of MFSC on plants, crops, agriculture, and different ecosystems worldwide, and highlight potential avenues to enhance the resilience of crops to MFSC.
more »
« less
This content will become publicly available on December 12, 2026
bHLH35 mediates specificity in plant responses to multiple stress conditions
Climate change and enhanced pollution levels are subjecting plants and crops to an increased number of different stressors, simultaneously or sequentially, generating conditions of multifactorial stress combination (MFSC). Although MFSC was shown to severely diminish plant growth, yield, and survival, how plants acclimate to increased levels of stress complexity is largely unknown. Here, we reveal that theArabidopsis thalianatranscriptional regulator basic helix-loop-helix 35 (bHLH35) is required for plant acclimation to a specific set of MFSC conditions that includes a combination of salinity, excess light, and heat, occurring simultaneously (but not to each of these stresses applied individually or in any other combination). Under the three-stress combination, bHLH35 interacts with no apical meristem/transcription activator factor/cup-shaped cotyledon 69 (NAC069), binds the promoter oflateral organ boundaries domain 31 (LBD31), and regulates the expression of transcripts involved in flavonoid metabolism and ethylene signaling. Our findings uncover a high degree of specificity in plant responses to stress combination, suggesting that different conditions of MFSC could require the function of specific genetic programs for acclimation.
more »
« less
- Award ID(s):
- 2343815
- PAR ID:
- 10658043
- Publisher / Repository:
- Science Advances
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 11
- Issue:
- 50
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Extreme environmental conditions, such as heat, salinity, and decreased water availability, can have a devastating impact on plant growth and productivity, potentially resulting in the collapse of entire ecosystems. Stress-induced systemic signaling and systemic acquired acclimation play canonical roles in plant survival during episodes of environmental stress. Recent studies revealed that in response to a single abiotic stress, applied to a single leaf, plants mount a comprehensive stress-specific systemic response that includes the accumulation of many different stress-specific transcripts and metabolites, as well as a coordinated stress-specific whole-plant stomatal response. However, in nature plants are routinely subjected to a combination of two or more different abiotic stresses, each potentially triggering its own stress-specific systemic response, highlighting a new fundamental question in plant biology: are plants capable of integrating two different systemic signals simultaneously generated during conditions of stress combination? Here we show that plants can integrate two different systemic signals simultaneously generated during stress combination, and that the manner in which plants sense the different stresses that trigger these signals (i.e., at the same or different parts of the plant) makes a significant difference in how fast and efficient they induce systemic reactive oxygen species (ROS) signals; transcriptomic, hormonal, and stomatal responses; as well as plant acclimation. Our results shed light on how plants acclimate to their environment and survive a combination of different abiotic stresses. In addition, they highlight a key role for systemic ROS signals in coordinating the response of different leaves to stress.more » « less
-
SUMMARY Global warming, climate change, and industrial pollution are altering our environment subjecting plants, microbiomes, and ecosystems to an increasing number and complexity of abiotic stress conditions, concurrently or sequentially. These conditions, termed, “multifactorial stress combination” (MFSC), can cause a significant decline in plant growth and survival. However, the impacts of MFSC on reproductive tissues and yield of major crop plants are largely unknown. We subjected soybean (Glycine max) plants to a MFSC of up to five different stresses (water deficit, salinity, low phosphate, acidity, and cadmium), in an increasing level of complexity, and conducted integrative transcriptomic‐phenotypic analysis of their reproductive and vegetative tissues. We reveal that MFSC has a negative cumulative effect on soybean yield, that each set of MFSC condition elicits a unique transcriptomic response (that is different between flowers and leaves), and that selected genes expressed in leaves or flowers of soybean are linked to the effects of MFSC on different vegetative, physiological, and/or reproductive parameters. Our study identified networks and pathways associated with reactive oxygen species, ascorbic acid and aldarate, and iron/copper signaling/metabolism as promising targets for future biotechnological efforts to augment the resilience of reproductive tissues of major crop plants to MFSC. In addition, we provide unique phenotypic and transcriptomic datasets for dissecting the mechanistic effects of MFSC on the vegetative, physiological, and reproductive processes of a crop plant.more » « less
-
Abstract The complexity of environmental factors affecting crops in the field is gradually increasing due to climate change-associated weather events, such as droughts or floods combined with heat waves, coupled with the accumulation of different environmental and agricultural pollutants. The impact of multiple stress conditions on plants was recently termed “multifactorial stress combination” (MFSC) and defined as the occurrence of 3 or more stressors that impact plants simultaneously or sequentially. We recently reported that with the increased number and complexity of different MFSC stressors, the growth and survival of Arabidopsis (Arabidopsis thaliana) seedlings declines, even if the level of each individual stress is low enough to have no significant effect on plants. However, whether MFSC would impact commercial crop cultivars is largely unknown. Here, we reveal that a MFSC of 5 different low-level abiotic stresses (salinity, heat, the herbicide paraquat, phosphorus deficiency, and the heavy metal cadmium), applied in an increasing level of complexity, has a significant negative impact on the growth and biomass of a commercial rice (Oryza sativa) cultivar and a maize (Zea mays) hybrid. Proteomics, element content, and mixOmics analyses of MFSC in rice identified proteins that correlate with the impact of MFSC on rice seedlings, and analysis of 42 different rice genotypes subjected to MFSC revealed substantial genetic variability in responses to this unique state of stress combination. Taken together, our findings reveal that the impacts of MFSC on 2 different crop species are severe and that MFSC may substantially affect agricultural productivity.more » « less
-
An increase in the frequency and intensity of heat waves, floods, droughts and other environmental stresses, resulting from climate change, is threatening agricultural food production worldwide. Heat waves are especially problematic to grain yields, as the reproductive processes of almost all our main grain crops are highly sensitive to heat. At times, heat waves can occur together with drought, high ozone levels, pathogen infection and/or waterlogging stress that suppress the overall process of plant cooling by transpiration. We recently reported that under conditions of heat and water-deficit stress combination, the stomata on sepals and pods of soybean (Glycine max) remain open, while the stomata on leaves close. This process, termed ‘differential transpiration’, enabled the cooling of reproductive organs, while leaf temperature increased owing to suppressed transpiration. In this review article, we focus on the impacts on crops of heat waves occurring in isolation and of heat waves combined with drought or waterlogging stress, address the main processes impacted in plants by these stresses and discuss ways to mitigate the negative effects of isolated heat waves and of heat waves that occur together with other stresses (i.e. stress combination), on crops, with a focus on the process of differential transpiration. This article is part of the theme issue ‘Crops under stress: can we mitigate the impacts of climate change on agriculture and launch the ‘Resilience Revolution’?’.more » « less
An official website of the United States government
