skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 4, 2027

Title: Transient Antiskyrmion‐Mediated Topological Transitions in Isotropic Magnets
Abstract From elementary particles to cosmological structures, topological solitons are ubiquitous nonlinear excitations valued for their robustness and complex interactions. In magnetism, solitons such as skyrmions and antiskyrmions behave analogously to particles and antiparticles, typically annihilating in pairs in accordance with topological conservation laws. Here the stripe‐to‐skyrmion transition is experimentally observed and a model for a skyrmion–antiskyrmion–skyrmion intertwined state is introduced, in which the central antiskyrmion is annihilated, leading to an increase in the local topological number. Because this transition occurs repeatedly across the film, the cumulative effect produces a global increase in the total topological charge. This model reflects a breakdown of topological protection in isotropic Dzyaloshinskii–Moriya interaction (DMI) materials, where symmetry constraints render the antiskyrmion energetically unstable and thermally activated. Using micromagnetic simulations and minimum‐energy‐path calculations, the antiskyrmion is identified as a transient, metastable excitation. To highlight its functional potential, this stripe‐to‐skyrmion transition within a Hall device is exploited to generate stochastic bitstreams, which are subsequently used in a proof‐of‐concept probabilistic computing demonstration. These results contribute to the understanding of topological spin‐texture dynamics and suggest opportunities for leveraging their transient behavior in probabilistic computing architectures.  more » « less
Award ID(s):
2328974
PAR ID:
10658107
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Science
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stabilization of topological spin textures in layered magnets has the potential to drive the development of advanced low-dimensional spintronics devices. However, achieving reliable and flexible manipulation of the topological spin textures beyond skyrmion in a two-dimensional magnet system remains challenging. Here, we demonstrate the introduction of magnetic iron atoms between the van der Waals gap of a layered magnet, Fe3GaTe2, to modify local anisotropic magnetic interactions. Consequently, we present direct observations of the order-disorder skyrmion lattices transition. In addition, non-trivial topological solitons, such as skyrmioniums and skyrmion bags, are realized at room temperature. Our work highlights the influence of random spin control of non-trivial topological spin textures. 
    more » « less
  2. Abstract Skyrmions and antiskyrmions are nanoscale swirling textures of magnetic moments formed by chiral interactions between atomic spins in magnetic noncentrosymmetric materials and multilayer films with broken inversion symmetry. These quasiparticles are of interest for use as information carriers in next-generation, low-energy spintronic applications. To develop skyrmion-based memory and logic, we must understand skyrmion-defect interactions with two main goals—determining how skyrmions navigate intrinsic material defects and determining how to engineer disorder for optimal device operation. Here, we introduce a tunable means of creating a skyrmion-antiskyrmion system by engineering the disorder landscape in FeGe using ion irradiation. Specifically, we irradiate epitaxial B20-phase FeGe films with 2.8 MeV Au4+ions at varying fluences, inducing amorphous regions within the crystalline matrix. Using low-temperature electrical transport and magnetization measurements, we observe a strong topological Hall effect with a double-peak feature that serves as a signature of skyrmions and antiskyrmions. These results are a step towards the development of information storage devices that use skyrmions and antiskyrmions as storage bits, and our system may serve as a testbed for theoretically predicted phenomena in skyrmion-antiskyrmion crystals. 
    more » « less
  3. This paper is devoted to a proof of the linear stability of the unit charge static Skyrmion F0. The Skyrme model, a natural generalisation of non-linear sigma models, is a non-linear classical field theory admitting topological solitons. It is considered in the study of nuclei and in condensed matter physics, as well as for purely mathematical reasons. 
    more » « less
  4. Abstract Room‐temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano‐spintronic devices. However, such skyrmion‐hosting materials are rare in nature. In this study, a self‐intercalated transition metal dichalcogenide Cr1+xTe2with a layered crystal structure that hosts room‐temperature skyrmions and exhibits large THE is reported. By tuning the self‐intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out‐of‐plane to the in‐plane configuration are achieved. Based on the intercalation engineering, room‐temperature skyrmions are successfully created in Cr1.53Te2with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion‐induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications. 
    more » « less
  5. Abstract Magnetic skyrmions are of great interest to both fundamental research and applications in post-von-Neumann computing devices. The successful implementation of skyrmionic devices requires functionalities of skyrmions with effective controls. Here we show that the local dynamics of skyrmions, in contrast to the global dynamics of a skyrmion as a whole, can be introduced to provide effective functionalities for versatile computing. A single skyrmion interacting with local pinning centres under thermal effects can fluctuate in time and switch between a small-skyrmion and a large-skyrmion state, thereby serving as a robust true random number generator for probabilistic computing. Moreover, neighbouring skyrmions exhibit an anti-correlated coupling in their fluctuation dynamics. Both the switching probability and the dynamic coupling strength can be tuned by modifying the applied magnetic field and spin current. Our results could lead to progress in developing magnetic skyrmionic devices with high tunability and efficient controls. 
    more » « less