skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations
{"Abstract":["For a set M of m elements, we define a decreasing chain of classes of normalized monotone-increasing valuation functions from 2^M to ℝ_{≥ 0}, parameterized by an integer q ∈ [2,m]. For a given q, we refer to the class as q-partitioning. A valuation function is subadditive if and only if it is 2-partitioning, and fractionally subadditive if and only if it is m-partitioning. Thus, our chain establishes an interpolation between subadditive and fractionally subadditive valuations. We show that this interpolation is smooth (q-partitioning valuations are "nearly" (q-1)-partitioning in a precise sense, Theorem 6), interpretable (the definition arises by analyzing the core of a cost-sharing game, à la the Bondareva-Shapley Theorem for fractionally subadditive valuations, Section 3.1), and non-trivial (the class of q-partitioning valuations is distinct for all q, Proposition 3).\r\nFor domains where provable separations exist between subadditive and fractionally subadditive, we interpolate the stronger guarantees achievable for fractionally subadditive valuations to all q ∈ {2,…, m}. Two highlights are the following:\r\n1) An Ω ((log log q)/(log log m))-competitive posted price mechanism for q-partitioning valuations. Note that this matches asymptotically the state-of-the-art for both subadditive (q = 2) [Paul Dütting et al., 2020], and fractionally subadditive (q = m) [Feldman et al., 2015]. \r\n2) Two upper-tail concentration inequalities on 1-Lipschitz, q-partitioning valuations over independent items. One extends the state-of-the-art for q = m to q < m, the other improves the state-of-the-art for q = 2 for q > 2. Our concentration inequalities imply several corollaries that interpolate between subadditive and fractionally subadditive, for example: 𝔼[v(S)] ≤ (1 + 1/log q)Median[v(S)] + O(log q). To prove this, we develop a new isoperimetric inequality using Talagrand’s method of control by q points, which may be of independent interest.\r\nWe also discuss other probabilistic inequalities and game-theoretic applications of q-partitioning valuations, and connections to subadditive MPH-k valuations [Tomer Ezra et al., 2019]."]}  more » « less
Award ID(s):
1955205
PAR ID:
10658521
Author(s) / Creator(s):
;
Editor(s):
Censor-Hillel, Keren; Grandoni, Fabrizio; Ouaknine, Joel; Puppis, Gabriele
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
334
ISSN:
1868-8969
Page Range / eLocation ID:
18:1-18:20
Subject(s) / Keyword(s):
Subadditive Functions Fractionally Subadditive Functions Posted Price Mechanisms Concentration Inequalities Theory of computation → Algorithmic mechanism design Mathematics of computing → Probability and statistics Theory of computation → Computational pricing and auctions
Format(s):
Medium: X Size: 20 pages; 992243 bytes Other: application/pdf
Size(s):
20 pages 992243 bytes
Sponsoring Org:
National Science Foundation
More Like this
  1. The celebrated model of auctions with interdependent valuations, introduced by Milgrom and Weber in 1982, has been studied almost exclusively under private signals $$s_1, \ldots, s_n$$ of the $$n$$ bidders and public valuation functions $$v_i(s_1, \ldots, s_n)$$. Recent work in TCS has shown that this setting admits a constant approximation to the optimal social welfare if the valuations satisfy a natural property called submodularity over signals (SOS). More recently, Eden et al. (2022) have extended the analysis of interdependent valuations to include settings with private signals and \emph{private valuations}, and established $$O(\log^2 n)$$-approximation for SOS valuations. In this paper we show that this setting admits a {\em constant} factor approximation, settling the open question raised by Eden et al. (2022). 
    more » « less
  2. Mohar, Bojan; Shinkar, Igor; O'Donnell, Ryan (Ed.)
    We present a constant-factor approximation algorithm for the Nash Social Welfare (NSW) maximization problem with subadditive valuations accessible via demand queries. More generally, we propose a framework for NSW optimization which assumes two subroutines that (1) solve a conguration-type LP under certain additional conditions, and (2) round the fractional solution with respect to utilitarian social welfare. In particular, a constant-factor approximation for submodular valuations with value queries can also be derived from our framework. 
    more » « less
  3. Mohar, Bojan; Shinkar, Igor; O'Donnell, Ryan (Ed.)
    We present a constant-factor approximation algorithm for the Nash Social Welfare (NSW) maximization problem with subadditive valuations accessible via demand queries. More generally, we propose a framework for NSW optimization which assumes two subroutines which (1) solve a configuration-type LP under certain additional conditions, and (2) round the fractional solution with respect to utilitarian social welfare. In particular, a constant-factor approximation for submodular valuations with value queries can also be derived from our framework. 
    more » « less
  4. We study the fair and efficient allocation of a set of indivisible goods among agents, where each good has several copies, and each agent has an additively separable concave valuation function with a threshold. These valuations capture the property of diminishing marginal returns, and they are more general than the well-studied case of additive valuations. We present a polynomial-time algorithm that approximates the optimal Nash social welfare (NSW) up to a factor of e1/e ≈ 1.445. This matches with the state-of-the-art approximation factor for additive valuations. The computed allocation also satisfies the popular fairness guarantee of envy-freeness up to one good (EF1) up to a factor of 2 + ε. For instances without thresholds, it is also approximately Pareto-optimal. For instances satisfying a large market property, we show an improved approximation factor. Lastly, we show that the upper bounds on the optimal NSW introduced in Cole and Gkatzelis (2018) and Barman et al. (2018) have the same value. 
    more » « less
  5. Tauman_Kalai, Yael (Ed.)
    We consider prophet inequalities subject to feasibility constraints that are the intersection of q matroids. The best-known algorithms achieve a Θ(q)-approximation, even when restricted to instances that are the intersection of q partition matroids, and with i.i.d. Bernoulli random variables [José R. Correa et al., 2022; Moran Feldman et al., 2016; Marek Adamczyk and Michal Wlodarczyk, 2018]. The previous best-known lower bound is Θ(√q) due to a simple construction of [Robert Kleinberg and S. Matthew Weinberg, 2012] (which uses i.i.d. Bernoulli random variables, and writes the construction as the intersection of partition matroids). We establish an improved lower bound of q^{1/2+Ω(1/log log q)} by writing the construction of [Robert Kleinberg and S. Matthew Weinberg, 2012] as the intersection of asymptotically fewer partition matroids. We accomplish this via an improved upper bound on the product dimension of a graph with p^p disjoint cliques of size p, using recent techniques developed in [Noga Alon and Ryan Alweiss, 2020]. 
    more » « less