skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: Using the diel cycle of ocean microbes to better understand their biogeochemical functions
Abstract The daily cycle of solar radiation has a profound influence in structuring the physiology of microbes in the euphotic zone and subsequently setting the degree of coupling across trophic levels within ocean ecosystems. There has been an upsurge of interest in the biological role of the diel cycle and the ability to probe it using molecular approaches (i.e., “omics”), which now allow us to pinpoint the level of detail of the diel cycle that is required to better understand microbes' roles across multiple biogeochemical cycles. Although sampling the diel cycle requires additional resources, the payback is large. A better understanding of the diel cycle provides a holistic framework with which to align patterns and causal sequences across multi‐omic layers, yielding consequent connections with metabolic processes to develop more robust mechanistic models. Such models provide the stepping stones to better understand how resource allocation in cells is driven by environmental forcing.  more » « less
Award ID(s):
2022597
PAR ID:
10658749
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Periodicals LLC on behalf of Association for the Sciences of Limnology and Oceanography.
Date Published:
Journal Name:
Limnology and Oceanography Letters
Volume:
10
Issue:
4
ISSN:
2378-2242
Page Range / eLocation ID:
434 to 447
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Organic carbon transfer between surface ocean photosynthetic and heterotrophic microbes is a central but poorly understood process in the global carbon cycle. In a model community in which diatom extracellular release of organic molecules sustained growth of a co-cultured bacterium, we determined quantitative changes in the diatom endometabolome and the bacterial uptake transcriptome over two diel cycles. Of the nuclear magnetic resonance (NMR) peaks in the diatom endometabolites, 38% had diel patterns with noon or mid-afternoon maxima; the remaining either increased (36%) or decreased (26%) through time. Of the genes in the bacterial uptake transcriptome, 94% had a diel pattern with a noon maximum; the remaining decreased over time (6%). Eight diatom endometabolites identified with high confidence were matched to the bacterial genes mediating their utilization. Modeling of these coupled inventories with only diffusion-based phytoplankton extracellular release could not reproduce all the patterns. Addition of active release mechanisms for physiological balance and bacterial recognition significantly improved model performance. Estimates of phytoplankton extracellular release range from only a few percent to nearly half of annual net primary production. Improved understanding of the factors that influence metabolite release and consumption by surface ocean microbes will better constrain this globally significant carbon flux. 
    more » « less
  2. Abstract AimLight, essential for photosynthesis, is present in two periodic cycles in nature: seasonal and diel. Although seasonality of light is typically resolved in ocean biogeochemical–ecosystem models because of its significance for seasonal succession and biogeography of phytoplankton, the diel light cycle is generally not resolved. The goal of this study is to demonstrate the impact of diel light cycles on phytoplankton competition and biogeography in the global ocean. LocationGlobal ocean. Major taxa studiedPhytoplankton. MethodsWe use a three‐dimensional global ocean model and compare simulations of high temporal resolution with and without diel light cycles. The model simulates 15 phytoplankton types with different cell sizes, encompassing two broad ecological strategies: small cells with high nutrient affinity (gleaners) and larger cells with high maximal growth rate (opportunists). Both are grazed by zooplankton and limited by nitrogen, phosphorus and iron. ResultsSimulations show that diel cycles of light induce diel cycles in limiting nutrients in the global ocean. Diel nutrient cycles are associated with higher concentrations of limiting nutrients, by 100% at low latitudes (−40° to 40°), a process that increases the relative abundance of opportunists over gleaners. Size classes with the highest maximal growth rates from both gleaner and opportunist groups are favoured by diel light cycles. This mechanism weakens as latitude increases, because the effects of the seasonal cycle dominate over those of the diel cycle. Main conclusionsUnderstanding the mechanisms that govern phytoplankton biogeography is crucial for predicting ocean ecosystem functioning and biogeochemical cycles. We show that the diel light cycle has a significant impact on phytoplankton competition and biogeography, indicating the need for understanding the role of diel processes in shaping macroecological patterns in the global ocean. 
    more » « less
  3. Ecological traits have flourished in insect-based studies, resulting in a substantial and growing list of measurable traits. One trait that will likely become more attractive as data quality and curation improve is the diel patterns of insect activities. Diel patterns in ants can help better understand vital ecological processes such as competition and invasion biology. Because diel activity has the potential to be an informative trait in ants, we assessed the diel designations of foraging ants across the literature to quantify and assess the variation and sampling extent of this particular trait. We collected diel designations from 104 peer-reviewed scientific articles and quantified these data across important and documented ecological traits. We found that a disproportionate amount of solitary foraging ants were primarily diurnal foragers relative to ants that cooperatively forage. Our data show that diel patterns in foraging vary widely within and across ant genera. Importantly, we highlight the undersampling of this crucial ecological trait, which currently limits its utility. Our efforts highlight the importance of assessing an ecologically important trait’s landscape of reported data. 
    more » « less
  4. Heck, Michelle (Ed.)
    ABSTRACT Plant-associated microbial assemblages are known to shift at time scales aligned with plant phenology, as influenced by the changes in plant-derived nutrient concentrations and abiotic conditions observed over a growing season. But these same factors can change dramatically in a sub-24-hour period, and it is poorly understood how such diel cycling may influence plant-associated microbiomes. Plants respond to the change from day to night via mechanisms collectively referred to as the internal “clock,” and clock phenotypes are associated with shifts in rhizosphere exudates and other changes that we hypothesize could affect rhizosphere microbes. The mustardBoechera strictahas wild populations that contain multiple clock phenotypes of either a 21- or a 24-hour cycle. We grew plants of both phenotypes (two genotypes per phenotype) in incubators that simulated natural diel cycling or that maintained constant light and temperature. Under both cycling and constant conditions, the extracted DNA concentration and the composition of rhizosphere microbial assemblages differed between time points, with daytime DNA concentrations often triple what were observed at night and microbial community composition differing by, for instance, up to 17%. While we found that plants of different genotypes were associated with variation in rhizosphere assemblages, we did not see an effect on soil conditioned by a particular host plant circadian phenotype on subsequent generations of plants. Our results suggest that rhizosphere microbiomes are dynamic at sub-24-hour periods, and those dynamics are shaped by diel cycling in host plant phenotype. IMPORTANCEWe find that the rhizosphere microbiome shifts in composition and extractable DNA concentration in sub-24-hour periods as influenced by the plant host’s internal clock. These results suggest that host plant clock phenotypes could be an important determinant of variation in rhizosphere microbiomes. 
    more » « less
  5. Abstract Lakes play a significant role in the global carbon cycle, acting as sources and sinks of carbon dioxide (CO2). In situ measurements of CO2flux (FCO2) from lakes have generally been collected during daylight, despite indications of significant diel variability. This introduces bias when scaling up to whole‐lake annual aquatic carbon budgets. We conducted an international sampling program to ascertain the extent of diel variation in FCO2across lakes. We sampled 21 lakes over 41 campaigns and measured FCO2at 4‐h intervals over a full diel cycle. Rates of FCO2ranged from −3.16 to 4.39 mmol m−2 h−1. Integrated over a day, FCO2ranged from −381.68 to 878.49 mg C m−2d−1(mean = 76.54) across campaigns. We identified three characteristic diel patterns in FCO2related to trophic status and show that for half of the campaigns, daily flux estimates were biased by > 50% if based on a single (daytime) measurement. 
    more » « less