skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 25, 2026

Title: Scalable Processing of Moving Flock Patterns
We present a scalable approach for identifying moving flock patterns in large trajectory databases. A moving flock pattern refers to a group of entities that move closely together within a defined spatial radius for a minimum time interval. We focus on improving the state-of-the-art sequential algorithms, which suffer from high computational costs when dealing with large datasets. By leveraging distributed frameworks and utilizing spatial partitioning, the proposed solution aims to significantly reduce the time required to detect moving flock patterns. We highlight the bottlenecks of the sequential approaches and offer optimizations like partition-based parallelism and strategies for managing flock patterns that span multiple partitions. An experimental evaluation using synthetic trajectory datasets, demonstrates that the proposed methods substantially improve scalability and performance compared to existing sequential algorithms.  more » « less
Award ID(s):
1954644
PAR ID:
10658844
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
Page Range / eLocation ID:
149 to 158
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The detection of abnormal moving objects over high-volume trajectory streams is critical for real-time applications ranging from military surveillance to transportation management. Yet this outlier detection problem, especially along both the spatial and temporal dimensions, remains largely unexplored. In this work, we propose a rich taxonomy of novel classes of neighbor-based trajectory outlier definitions that model the anomalous behavior of moving objects for a large range of real-time applications. Our theoretical analysis and empirical study on two real-world datasets—the Beijing Taxi trajectory data and the Ground Moving Target Indicator data stream—and one generated Moving Objects dataset demonstrate the effectiveness of our taxonomy in effectively capturing different types of abnormal moving objects. Furthermore, we propose a general strategy for efficiently detecting these new outlier classes called the minimal examination (MEX) framework. The MEX framework features three core optimization principles, which leverage spatiotemporal as well as the predictability properties of the neighbor evidence to minimize the detection costs. Based on this foundation, we design algorithms that detect the outliers based on these classes of new outlier semantics that successfully leverage our optimization principles. Our comprehensive experimental study demonstrates that our proposed MEX strategy drives the detection costs 100-fold down into the practical realm for applications that analyze high-volume trajectory streams in near real time. 
    more » « less
  2. null (Ed.)
    Moving objects equipped with location-positioning devices continuously generate a large amount of spatio-temporal trajectory data. An interesting finding over a trajectory stream is a group of objects that are travelling together for a certain period of time. We observe that existing studies on mining co-moving objects do not consider an important correlation between co-moving objects, which is the reoccurrence of the co-moving pattern. In this study, we propose the problem of finding recurrent co-moving patterns from streaming trajectories, enabling us to discover recent co-moving patterns that are repeated within a given time period. Experimental results on real-life trajectory data verify the efficiency and effectiveness of our method. 
    more » « less
  3. Data visualizations can reveal trends and patterns that are not otherwise obvious from the raw data or summary statistics. While visualizing low-dimensional data is relatively straightforward (for example, plotting the change in a variable over time as (x,y) coordinates on a graph), it is not always obvious how to visualize high-dimensional datasets in a similarly intuitive way. Here we present HypeTools, a Python toolbox for visualizing and manipulating large, high-dimensional datasets. Our primary approach is to use dimensionality reduction techniques (Pearson, 1901; Tipping & Bishop, 1999) to embed high-dimensional datasets in a lower-dimensional space, and plot the data using a simple (yet powerful) API with many options for data manipulation [e.g. hyperalignment (Haxby et al., 2011), clustering, normalizing, etc.] and plot styling. The toolbox is designed around the notion of data trajectories and point clouds. Just as the position of an object moving through space can be visualized as a 3D trajectory, HyperTools uses dimensionality reduction algorithms to create similar 2D and 3D trajectories for time series of high-dimensional observations. The trajectories may be plotted as interactive static plots or visualized as animations. These same dimensionality reduction and alignment algorithms can also reveal structure in static datasets (e.g. collections of observations or attributes). We present several examples showcasing how using our toolbox to explore data through trajectories and low-dimensional embeddings can reveal deep insights into datasets across a wide variety of domains. 
    more » « less
  4. We address the problem of efficient maintenance of the answer to a new type of query: Continuous Maximizing Range- Sum (Co-MaxRS) for moving objects trajectories. The traditional static/spatial MaxRS problem finds a location for placing the centroid of a given (axes-parallel) rectangle R so that the sum of the weights of the point-objects from a given set O inside the interior of R is maximized. However, moving objects continuously change their locations over time, so the MaxRS solution for a particular time instant need not be a solution at another time instant. In this paper, we devise the conditions under which a particular MaxRS solution may cease to be valid and a new optimal location for the query-rectangle R is needed. More specifically, we solve the problem of maintaining the trajectory of the centroid of R. In addition, we propose efficient pruning strategies (and corresponding data structures) to speed-up the process of maintaining the accuracy of the Co-MaxRS solution. We prove the correctness of our approach and present experimental evaluations over both real and synthetic datasets, demonstrating the benefits of the proposed methods. 
    more » « less
  5. Monitoring and analysis of wildlife are key to conservation planning and conflict management. The widespread use of camera traps coupled with AI-based analysis tools serves as an excellent example of successful and non-invasive use of technology for design, planning, and evaluation of conservation policies. As opposed to the typical use of camera traps that capture still images or short videos, in this project, we propose to analyze longer term videos monitoring a large flock of birds. This project, which is part of the NSF-TIH Indo-US joint R&D partnership, focuses on solving challenges associated with the analysis of long-term videos captured at feeding grounds and nesting sites, among other such locations that host large flocks of migratory birds. We foresee that the objectives of this project would lead to datasets and benchmarking tools as well as novel algorithms that would be instrumental in developing automated video analysis tools that could in turn help understand individual and social behavior of birds. The first of the key outcomes of this research will include the curation of challenging, real-world datasets for benchmarking various image and video analytics algorithms for tasks such as counting, detection, segmentation, and tracking. Our recent efforts towards this outcome is a curated dataset of 812 high-resolution, point-annotated, images (4K - 32MP) of a flock of Demoiselle cranes (Anthropoides virgo) taken from their feeding site at Khichan, Rajasthan, India. The average number of birds in each image is about 207, with a maximum count of 1500. The benchmark experiments show that state-of-the-art vision techniques struggle with tasks such as segmentation, detection, localization, and density estimation for the proposed dataset. Over the execution of this open science research, we will be scaling this dataset for segmentation and tracking in videos, as well as developing novel techniques for video analytics for wildlife monitoring. 
    more » « less