skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Outlier Detection over Massive-Scale Trajectory Streams
The detection of abnormal moving objects over high-volume trajectory streams is critical for real-time applications ranging from military surveillance to transportation management. Yet this outlier detection problem, especially along both the spatial and temporal dimensions, remains largely unexplored. In this work, we propose a rich taxonomy of novel classes of neighbor-based trajectory outlier definitions that model the anomalous behavior of moving objects for a large range of real-time applications. Our theoretical analysis and empirical study on two real-world datasets—the Beijing Taxi trajectory data and the Ground Moving Target Indicator data stream—and one generated Moving Objects dataset demonstrate the effectiveness of our taxonomy in effectively capturing different types of abnormal moving objects. Furthermore, we propose a general strategy for efficiently detecting these new outlier classes called the minimal examination (MEX) framework. The MEX framework features three core optimization principles, which leverage spatiotemporal as well as the predictability properties of the neighbor evidence to minimize the detection costs. Based on this foundation, we design algorithms that detect the outliers based on these classes of new outlier semantics that successfully leverage our optimization principles. Our comprehensive experimental study demonstrates that our proposed MEX strategy drives the detection costs 100-fold down into the practical realm for applications that analyze high-volume trajectory streams in near real time.  more » « less
Award ID(s):
1910880
PAR ID:
10251261
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Database Systems
Volume:
42
Issue:
2
ISSN:
0362-5915
Page Range / eLocation ID:
1 to 33
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Real-time outlier detection in data streams has drawn much attention recently as many applications need to be able to detect abnormal behaviors as soon as they occur. The arrival and departure of streaming data on edge devices impose new challenges to process the data quickly in real-time due to memory and CPU limitations of these devices. Existing methods are slow and not memory efficient as they mostly focus on quick detection of inliers and pay less attention to expediting neighbor searches for outlier candidates. In this study, we propose a new algorithm, CPOD, to improve the efficiency of outlier detections while reducing its memory requirements. CPOD uses a unique data structure called "core point" with multi-distance indexing to both quickly identify inliers and reduce neighbor search spaces for outlier candidates. We show that with six real-world and one synthetic dataset, CPOD is, on average, 10, 19, and 73 times faster than M_MCOD, NETS, and MCOD, respectively, while consuming low memory. 
    more » « less
  2. null (Ed.)
    Moving objects equipped with location-positioning devices continuously generate a large amount of spatio-temporal trajectory data. An interesting finding over a trajectory stream is a group of objects that are travelling together for a certain period of time. We observe that existing studies on mining co-moving objects do not consider an important correlation between co-moving objects, which is the reoccurrence of the co-moving pattern. In this study, we propose the problem of finding recurrent co-moving patterns from streaming trajectories, enabling us to discover recent co-moving patterns that are repeated within a given time period. Experimental results on real-life trajectory data verify the efficiency and effectiveness of our method. 
    more » « less
  3. Given a road network and a set of trajectory data, the anomalous behavior detection (ABD) problem is to identify drivers that show significant directional deviations, hard-brakings, and accelerations in their trips. The ABD problem is important in many societal applications, including Mild Cognitive Impairment (MCI) detection and safe route recommendations for older drivers. The ABD problem is computationally challenging due to the large size of temporally-detailed trajectories dataset. In this paper, we propose an Edge-Attributed Matrix that can represent the key properties of temporally-detailed trajectory datasets and identify abnormal driving behaviors. Experiments using real-world datasets demonstrated that our approach identifies abnormal driving behaviors. 
    more » « less
  4. Local outlier techniques are known to be effective for detecting outliers in skewed data, where subsets of the data exhibit diverse distribution properties. However, existing methods are not well equipped to support modern high-velocity data streams due to the high complexity of the detection algorithms and their volatility to data updates. To tackle these shortcomings, we propose local outlier semantics that operate at an abstraction level by leveraging kernel density estimation (KDE) to effectively detect local outliers from streaming data. A strategy to continuously detect top-N KDE-based local outliers over streams is designed, called KELOS – the first linear time complexity streaming local outlier detection approach. The first innovation of KELOS is the abstract kernel center-based KDE (aKDE) strategy. aKDE accurately yet efficiently estimates the data density at each point – essential for local outlier detection. This is based on the observation that a cluster of points close to each other tend to have a similar influence on a target point’s density estimation when used as kernel centers. These points thus can be represented by one abstract kernel center. Next, the KELOS’s inlier pruning strategy early prunes points that have no chance to become top-N outliers. This empowers KELOS to skip the computation of their data density and of the outlier status for every data point. Together aKDE and the inlier pruning strategy eliminate the performance bottleneck of streaming local outlier detection. The experimental evaluation demonstrates that KELOS is up to 6 orders of magnitude faster than existing solutions, while being highly effective in detecting local outliers from streaming data. 
    more » « less
  5. null (Ed.)
    Modern Internet of Things ( IoT ) applications generate massive amounts of time-stamped data, much of it in the form of discrete, symbolic sequences. In this work, we present a new system called TOP that deTects Outlier Patterns from these sequences. To solve the fundamental limitation of existing pattern mining semantics that miss outlier patterns hidden inside of larger frequent patterns, TOP offers new pattern semantics based on contextual patterns that distinguish the independent occurrence of a pattern from its occurrence as part of its super-pattern. We present efficient algorithms for the mining of this new class of contextual patterns. In particular, in contrast to the bottom-up strategy for state-of-the-art pattern mining techniques, our top-down Reduce strategy piggy backs pattern detection with the detection of the context in which a pattern occurs. Our approach achieves linear time complexity in the length of the input sequence. Effective optimization techniques such as context-driven search space pruning and inverted index-based outlier pattern detection are also proposed to further speed up contextual pattern mining. Our experimental evaluation demonstrates the effectiveness of TOP at capturing meaningful outlier patterns in several real-world IoT use cases. We also demonstrate the efficiency of TOP, showing it to be up to 2 orders of magnitude faster than adapting state-of-the-art mining to produce this new class of contextual outlier patterns, allowing us to scale outlier pattern mining to large sequence datasets. 
    more » « less