Abstract I employ an elasticity‐based method to invert a geodetically derived surface velocity field in the western US using for present‐day surface strain rate fields with uncertainties. The method uses distributed body forces in a thin elastic sheet and allows for discontinuities in velocity across creeping faults using the solution for dislocations in a thin elastic plate. I compare the strain rate fields with previously published stress orientations and moment rates from geological slip rate data and previous geodetic studies. Geologic and geodetic moment rates are calculated using slip rate and off‐fault strain rates from the 2023 US National Seismic Hazard Model (NSHM) deformation models. I find that computed total geodetic moment rates are higher than NSHM summed moment rates on faults for all regions of the western US except the highest deforming rate regions including the Western Transverse Ranges and the northern and southern San Andreas Fault (SAF) system in California. Computed geodetic moment rates are comparable to the moment rates derived from the geodetically based NSHM deformation models in all regions. I find systematic differences in orientations of maximum horizontal shortening rate and maximum horizontal compressive stress in the Pacific Northwest region and along much of the SAF system. In the Pacific Northwest, the maximum horizontal stress orientations are rotated counterclockwise 40–90° relative to the maximum horizontal strain rate directions. Along the SAF system, the maximum horizontal stresses are rotated systematically 25–40° clockwise (closer to fault normal) relative to the strain rates.
more »
« less
This content will become publicly available on December 1, 2026
Strain Rates Along the Alpine‐Himalayan Belt From a Comprehensive GNSS Velocity Field
Abstract The Alpine‐Himalayan belt is one of Earth's most dynamic and complex regions, characterized by intense tectonic deformation and seismicity. Comprehensive analyses of continental‐scale crustal deformation and seismic hazards along this extensive orogenic belt require the compilation of large geodetic data sets. In this study, we integrate 42 published Global Navigation Satellite System (GNSS) velocity fields, building an internally consistent data set for the entire belt, spanning from Iberia to Southeast Asia and comprising 11,177 horizontal and 3,940 vertical velocities. We use this unified GNSS velocity field to estimate surface strain rates and their posterior uncertainties in the eastern Mediterranean region and the India‐Asia collision zone. Our results show large‐scale agreement between the orientation and style of geodetic and seismic strain rate tensors across the belt. Additionally, our analyses substantiate previously documented azimuthal alignments between principal strain rate directions and seismic anisotropy orientations, often used as a proxy for finite strain in the convecting mantle. These correlations are particularly apparent in the Aegean, North Anatolia, Tibet, Tian Shan, Altai, Sayan, and Baikal regions, underscoring the need for future research on the relationship between mantle flow and lithospheric deformation.
more »
« less
- Award ID(s):
- 2045291
- PAR ID:
- 10659046
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 130
- Issue:
- 12
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The dynamics of Earth's D″ layer at the base of the mantle plays an essential role in Earth's thermal and chemical evolution. Mantle convection in D″ is thought to result in seismic anisotropy; therefore, observations of anisotropy may be used to infer lowermost mantle flow. However, the connections between mantle flow and seismic anisotropy in D″ remain ambiguous. Here, we calculate the present‐day mantle flow field in D″ using 3D global geodynamic models. We then compute strain, a measure of deformation, outside the two large‐low velocity provinces (LLVPs) and compare the distribution of strain with previous observations of anisotropy. We find that, on a global scale, D″ materials are advected toward the LLVPs. The strains of D″ materials generally increase with time along their paths toward the LLVPs and toward deeper depths, but regions far from LLVPs may develop relative high strain as well. Materials in D″ outside the LLVPs mostly undergo lateral stretching, with the stretching direction often aligning with mantle flow direction, especially in fast flow regions. In most models, the depth‐averaged strain in D″ is >0.5 outside the LLVPs, consistent with widespread observations of seismic anisotropy. Flow directions inferred from anisotropy observations often (but not always) align with predictions from geodynamic modeling calculations.more » « less
-
ABSTRACT Geodetic data in plate boundary zones reflect the accrual of tectonic strain and stress, which will ultimately be released in earthquakes, and so they can provide valuable insights into future seismic hazards. To incorporate geodetic measurements of contemporary deformation into the 2022 revision of the New Zealand National Seismic Hazard Model 2022 (NZ NSHM 2022), we derive a range of strain-rate models from published interseismic Global Navigation Satellite Systems velocities for New Zealand. We calculate the uncertainty in strain rate excluding strain from the Taupō rift–Havre trough and Hikurangi subduction zone, which are handled separately, and the corresponding moment rates. A high shear strain rate occurs along the Alpine fault and the North Island dextral fault belt, as well as the eastern coast of the North Island. Dilatation rates are primarily contractional in the South Island and less well constrained in the North Island. Total moment accumulation derived using Kostrov-type summation varies from 0.64 to 2.93×1019 N·m/yr depending on method and parameter choices. To account for both aleatory and epistemic uncertainty in the strain-rate results, we use four different methods for estimating strain rate and calculate various average models and uncertainty metrics. The maximum shear strain rate is similar across all methods, whereas the dilatation rate and overall strain rate style differ more significantly. Each method provides an estimate of its own uncertainty propagated from the data uncertainties, and variability between methods provides an additional estimate of epistemic uncertainty. Epistemic uncertainty in New Zealand tends to be higher than the aleatory uncertainty estimates provided by any single method, and epistemic uncertainty on dilatation rate exceeds the aleatory uncertainty nearly everywhere. These strain-rate models were provided to the NZ NSHM 2022 team and used to develop fault-slip deficit rate models and scaled seismicity rate models.more » « less
-
SUMMARY Geodetic observations of post-seismic deformation due to afterslip and viscoelastic relaxation can be used to infer fault and lithosphere rheologies by combining the observations with mechanical models of post-seismic processes. However, estimating the spatial distributions of rheological parameters remains challenging because it requires solving a nonlinear inverse problem with a high-dimensional parameter space and potentially computationally expensive forward model. Here we introduce an inversion method to estimate spatially varying fault and lithospheric rheological parameters in a mechanical model of post-seismic deformation using geodetic time series. The forward model combines afterslip and viscoelastic relaxation governed by a velocity-strengthening frictional rheology and a power-law Burgers rheology, respectively, and incorporates the mechanical coupling between coseismic slip, afterslip and viscoelastic relaxation. The inversion method estimates spatially varying fault frictional parameters, viscoelastic constitutive parameters and coseismic stress change. We formulate the inverse problem in a Bayesian framework to quantify the uncertainties of the estimated parameters. To solve this problem with reasonable computational costs, we develop an algorithm to estimate the mean and covariance matrix of the posterior probability distribution based on an ensemble Kalman filter. We validate our method through numerical tests using a 2-D forward model and synthetic post-seismic GNSS time-series. The test results suggest that our method can estimate the spatially varying rheological parameters and their uncertainties reasonably well with tolerable computational costs. Our method can also recover spatially and temporally varying afterslip, viscous strain and effective viscosities and can distinguish the contributions of afterslip and viscoelastic relaxation to observed post-seismic deformation.more » « less
-
Abstract The Indo‐Burma subduction zone is a highly oblique subduction system where the Indian plate is converging with the Eurasian plate. How strain is partitioned between the Indo‐Burma interface and upper plate Kabaw Fault, and whether the megathrust is a locked and active zone of convergence that can generate great earthquakes are ongoing debates. Here, we use data from a total of 68 Global Navigation Satellite System (GNSS) stations, including newly installed stations across the Kabaw Fault and compute an updated horizontal and vertical GNSS velocity field. We correct vertical rates for fluctuating seasonal signals by accounting for the elastic response of monsoon water on the crust. We model the geodetic data by inverting for 11,000 planar and non‐planar megathrust fault geometries and two geologically viable structural interpretations of the Kabaw Fault that we construct from field geological data, considering a basin‐scale wedge‐fault and a crustal‐scale reverse fault. We demonstrate that the Indo‐Burma megathrust is locked, converging at a rate ofmm/yr, and capable of hosting >8.2Mwmegathrust events. We also show that the Kabaw Fault is locked and accommodating strike‐slip motion at a rate ofmm/yr and converging at a rate ofmm/yr. Our interpretation of the geological, geophysical, and geodetic datasets indicates the Kabaw Fault is a crustal‐scale structure that actively absorbs a portion of the convergence previously ascribed to the Indo‐Burma megathrust. This reveals a previously unrecognized seismic hazard associated with the Kabaw Fault and slightly reduces the estimated hazard posed by megathrust earthquakes in the region.more » « less
An official website of the United States government
