Abstract Concentrations of total dissolved inorganic carbon (DIC) in freshwater ecosystems are controlled by terrestrial inputs and a myriad of in situ processes, such as aquatic metabolism. Dissolved CO2is one of the components of DIC, and its dynamics are also regulated by chemical equilibrium with the DIC pool, so‐called carbonate buffering. Although its importance is generally recognized, carbonate buffering is still not consistently accounted for in freshwater studies. Here, we review key concepts in freshwater carbonate buffering, perform simulation experiments, and provide a case study of an alkaline river to illustrate calculations of DIC from CO2. These analyses demonstrate that carbonate buffering can alter common interpretations of CO2data, including carbon–oxygen coupling through production and respiration. As direct measurements of dissolved CO2are increasingly common, accounting for CO2equilibria with DIC is critical to understanding its role in carbon cycling within most freshwater systems.
more »
« less
This content will become publicly available on January 1, 2027
Enhancing microbial induced calcium carbonate precipitation (MICCP) in self-healing concrete by addressing cell encapsulation: Investigating the impact of exogenous carbonate ions
- Award ID(s):
- 2029555
- PAR ID:
- 10659112
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Process Biochemistry
- Volume:
- 160
- Issue:
- C
- ISSN:
- 1359-5113
- Page Range / eLocation ID:
- 194 to 205
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Carbonate rocks are highly reactive and can have higher ratios of chemical weathering to total denudation relative to most other rock types. Their chemical reactivity affects the first-order morphology of carbonate-dominated landscapes and their climate sensitivity to weathering.However, there have been few efforts to quantify the partitioning ofdenudation into mechanical erosion and chemical weathering in carbonatelandscapes such that their sensitivity to changing climatic and tectonicconditions remains elusive. Here, we compile bedrock and catchment-averagedcosmogenic calcite–36Cl denudation rates and compare them to weathering rates derived from stream water chemistry from the same regions. Local bedrock denudation and weathering rates are comparable, ∼20–40 mm ka−1, whereas catchment-averaged denudation rates are ∼2.7 times higher. The discrepancy between bedrock and catchment-averaged denudation is 5 times lower compared to silicate-rich rocks, illustrating that elevated weathering rates make denudation more spatially uniform in carbonate-dominated landscapes. Catchment-averaged denudation rates correlate well with topographic relief and hillslope gradients, and moderate correlations with runoff can be explained by concurrent increases in weathering rates. Comparing denudation rates with weathering rates shows that mechanical erosion processes contribute ∼50 % of denudation in southern France and ∼70 % in Greece and Israel. Our results indicate that the partitioning between largely slope-independent chemical weathering and slope-dependent mechanical erosion varies based on climate and tectonics and impacts the landscape morphology. This leads us to propose a conceptual model whereby in humid, slowly uplifting regions, carbonates are associated with low-lying, flat topography because slope-independent chemical weathering dominates denudation. In contrast, in arid climates with rapid rock uplift rates, carbonate rocks form steep mountains that facilitate rapid, slope-dependent mechanical erosion required to compensate for inefficient chemical weathering and runoff loss to groundwater systems. This result suggests that carbonates represent an end member for interactions between climate, tectonics, and lithology.more » « less
-
Carbonate minerals contain stable isotopes of carbon and oxygen with different masses whose abundances and bond arrangement are governed by thermodynamics. The clumped isotopic value Δiis a measure of the temperature-dependent preference of heavy C and O isotopes to clump, or bond with or near each other, rather than with light isotopes in the carbonate phase. Carbonate clumped isotope thermometry uses Δivalues measured by mass spectrometry (Δ47, Δ48) or laser spectroscopy (Δ638) to reconstruct mineral growth temperature in surface and subsurface environments independent of parent water isotopic composition. Two decades of analytical and theoretical development have produced a mature temperature proxy that can estimate carbonate formation temperatures from 0.5 to 1,100°C, with up to 1–2°C external precision (2 standard error of the mean). Alteration of primary environmental temperatures by fluid-mediated and solid-state reactions and/or Δivalues that reflect nonequilibrium isotopic fractionations reveal diagenetic history and/or mineralization processes. Carbonate clumped isotope thermometry has contributed significantly to geological and biological sciences, and it is poised to advance understanding of Earth's climate system, crustal processes, and growth environments of carbonate minerals. ▪ Clumped heavy isotopes in carbonate minerals record robust temperatures and fluid compositions of ancient Earth surface and subsurface environments. ▪ Mature analytical methods enable carbonate clumped Δ47, Δ48, and Δ638measurements to address diverse questions in geological and biological sciences. ▪ These methods are poised to advance marine and terrestrial paleoenvironment and paleoclimate, tectonics, deformation, hydrothermal, and mineralization studies.more » « less
-
Abstract Northern Arizona University, Flagstaff, Arizona, USA, recently installed a MIni CArbon DAting System (MICADAS) with a gas interface system (GIS) for determining the14C content of CO2gas released by the acid dissolution of biogenic carbonates. We compare 48 paired graphite, GIS, and direct carbonate14C determinations of individual mollusk shells and echinoid tests. GIS sample sizes ranged between 0.5 and 1.5 mg and span 0.1 to 45.1 ka BP (n = 42). A reduced major axis regression shows a strong relationship between GIS and graphite percent Modern Carbon (pMC) values (m = 1.011; 95% CI [0.997–1.023], R2= 0.999) that is superior to the relationship between the direct carbonate and graphite values (m = 0.978; 95% CI [0.959-0.999], R2= 0.997). Sixty percent of GIS pMC values are within ±0.5 pMC of their graphite counterparts, compared to 26% of direct carbonate pMC values. The precision of GIS analyses is approximately ±7014C yrs to 6.5 ka BP and decreases to approximately ±13014C yrs at 12.5 ka BP. This precision is on par with direct carbonate and is approximately five times larger than for graphite. Six Plio-Pleistocene mollusk and echinoid samples yield finite ages when analyzed as direct carbonate but yield non-finite ages when analyzed as graphite or as GIS. Our results show that GIS14C dating of biogenic carbonates is preferable to direct carbonate14C dating and is an efficient alternative to standard graphite14C dating when the precision of graphite14C dating is not required.more » « less
-
Abstract Increased use and improved methodology of carbonate clumped isotope thermometry has greatly enhanced our ability to interrogate a suite of Earth‐system processes. However, interlaboratory discrepancies in quantifying carbonate clumped isotope (Δ47) measurements persist, and their specific sources remain unclear. To address interlaboratory differences, we first provide consensus values from the clumped isotope community for four carbonate standards relative to heated and equilibrated gases with 1,819 individual analyses from 10 laboratories. Then we analyzed the four carbonate standards along with three additional standards, spanning a broad range of δ47and Δ47values, for a total of 5,329 analyses on 25 individual mass spectrometers from 22 different laboratories. Treating three of the materials as known standards and the other four as unknowns, we find that the use of carbonate reference materials is a robust method for standardization that yields interlaboratory discrepancies entirely consistent with intralaboratory analytical uncertainties. Carbonate reference materials, along with measurement and data processing practices described herein, provide the carbonate clumped isotope community with a robust approach to achieve interlaboratory agreement as we continue to use and improve this powerful geochemical tool. We propose that carbonate clumped isotope data normalized to the carbonate reference materials described in this publication should be reported as Δ47(I‐CDES) values for Intercarb‐Carbon Dioxide Equilibrium Scale.more » « less
An official website of the United States government
