Optimal design under uncertainty remains a fundamental challenge in advancing reliable, next-generation process systems. Robust optimization (RO) offers a principled approach by safeguarding against worst-case scenarios across a range of uncertain parameters. However, traditional RO methods typically require known problem structure, which limits their applicability to high-fidelity simulation environments. To overcome these limitations, recent work has explored robust Bayesian optimization (RBO) as a flexible alternative that can accommodate expensive, black-box objectives. Existing RBO methods, however, generally ignore available structural information and struggle to scale to high-dimensional settings. In this work, we introduce BONSAI (Bayesian Optimization of Network Systems under uncertAInty), a new RBO framework that leverages partial structural knowledge commonly available in simulation-based models. Instead of treating the objective as a monolithic black box, BONSAI represents it as a directed graph of interconnected white- and black-box components, allowing the algorithm to utilize intermediate information within the optimization process. We further propose a scalable Thompson sampling-based acquisition function tailored to the structured RO setting, which can be efficiently optimized using gradient-based methods. We evaluate BONSAI across a diverse set of synthetic and real-world case studies, including applications in process systems engineering. Compared to existing simulation-based RO algorithms, BONSAI consistently delivers more sample-efficient and higher-quality robust solutions, highlighting its practical advantages for uncertainty-aware design in complex engineering systems.
more »
« less
This content will become publicly available on June 20, 2026
Robust Optimization with Decision-Dependent Information Discovery
Robust optimization (RO) is a popular paradigm for modeling and solving two- and multistage decision-making problems affected by uncertainty. In many real-world applications, such as R&D project selection, production planning, or preference elicitation for product or policy recommendations, the time of information discovery is decision-dependent and the uncertain parameters only become observable after an often costly investment. Yet, most of the literature on robust optimization assumes that the uncertain parameters can be observed for free and that the sequence in which they are revealed is independent of the decision-maker’s actions. To fill this gap in the practicability of RO, we consider two- and multistage robust optimization problems in which part of the decision variables control the time of information discovery. Thus, information available at any given time is decision-dependent and can be discovered (at least in part) by making strategic exploratory investments in previous stages. We propose a novel dynamic formulation of the problem and prove its correctness. We leverage our model to provide a solution method inspired from the K-adaptability approximation, whereby K candidate strategies for each decision stage are chosen here-and-now and, at the beginning of each period, the best of these strategies is selected after the uncertain parameters that were chosen to be observed are revealed. We reformulate the problem as a finite mixed-integer (resp. bilinear) program if none (resp. some) of the decision variables are real-valued. This finite program is solvable with off-the-shelf solvers. We generalize our approach to the minimization of piecewise linear convex functions. We demonstrate the effectiveness of our method in terms of usability, optimality, and speed on synthetic instances of the Pandora box problem, the preference elicitation problem with real-valued recommendations, the best box problem, and the R&D project portfolio optimization problem. Finally, we evaluate it on an instance of the active preference elicitation problem used to recommend kidney allocation policies to policy-makers at the United Network for Organ Sharing based on real data from the U.S. Kidney Allocation System. This paper was accepted by Chung Piaw Teo, optimization. Funding: This work was supported primarily by the Operations Engineering Program of the National Science Foundation under NSF Award No. 1763108. The authors are grateful for this support. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.00160 .
more »
« less
- Award ID(s):
- 1763108
- PAR ID:
- 10659124
- Publisher / Repository:
- INFORMS
- Date Published:
- Journal Name:
- Management Science
- ISSN:
- 0025-1909
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Over the last two decades, robust optimization has emerged as a popular means to address decision-making problems affected by uncertainty. This includes single-stage and multi-stage problems involving real-valued and/or binary decisions and affected by exogenous (decision-independent) and/or endogenous (decision-dependent) uncertain parameters. Robust optimization techniques rely on duality theory potentially augmented with approximations to transform a (semi-)infinite optimization problem to a finite program, the robust counterpart. Whereas writing down the model for a robust optimization problem is usually a simple task, obtaining the robust counterpart requires expertise. To date, very few solutions are available that can facilitate the modeling and solution of such problems. This has been a major impediment to their being put to practical use. In this paper, we propose ROC++, an open-source C++ based platform for automatic robust optimization, applicable to a wide array of single-stage and multi-stage robust problems with both exogenous and endogenous uncertain parameters, that is easy to both use and extend. It also applies to certain classes of stochastic programs involving continuously distributed uncertain parameters and endogenous uncertainty. Our platform naturally extends existing off-the-shelf deterministic optimization platforms and offers ROPy, a Python interface in the form of a callable library, and the ROB file format for storing and sharing robust problems. We showcase the modeling power of ROC++ on several decision-making problems of practical interest. Our platform can help streamline the modeling and solution of stochastic and robust optimization problems for both researchers and practitioners. It comes with detailed documentation to facilitate its use and expansion. The latest version of ROC++ can be downloaded from https://sites.google.com/usc.edu/robust-opt-cpp/ . Summary of Contribution: The paper “ROC++: Robust Optimization in C++” proposes a new open-source C++ based platform for modeling, automatically reformulating, and solving robust optimization problems. ROC++ can address both single-stage and multi-stage problems involving exogenous and/or endogenous uncertain parameters and real- and/or binary-valued adaptive variables. The ROC++ modeling language is similar to the one provided for the deterministic case by state-of-the-art deterministic optimization solvers. ROC++ comes with detailed documentation to facilitate its use and expansion. It also offers ROPy, a Python interface in the form of a callable library. The latest version of ROC++ can be downloaded from https://sites.google.com/usc.edu/robust-opt-cpp/ . History: Accepted by Ted Ralphs, Area Editor for Software Tools. Funding: This material is based upon work supported by the National Science Foundation under Grant No. 1763108. This support is gratefully acknowledged. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplementary Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.1209 ) or is available from the IJOC GitHub software repository ( https://github.com/INFORMSJoC ) at ( https://dx.doi.org/10.5281/zenodo.6360996 ).more » « less
-
We consider a risk-averse stochastic capacity planning problem under uncertain demand in each period. Using a scenario tree representation of the uncertainty, we formulate a multistage stochastic integer program to adjust the capacity expansion plan dynamically as more information on the uncertainty is revealed. Specifically, in each stage, a decision maker optimizes capacity acquisition and resource allocation to minimize certain risk measures of maintenance and operational cost. We compare it with a two-stage approach that determines the capacity acquisition for all the periods up front. Using expected conditional risk measures, we derive a tight lower bound and an upper bound for the gaps between the optimal objective values of risk-averse multistage models and their two-stage counterparts. Based on these derived bounds, we present general guidelines on when to solve risk-averse two-stage or multistage models. Furthermore, we propose approximation algorithms to solve the two models more efficiently, which are asymptotically optimal under an expanding market assumption. We conduct numerical studies using randomly generated and real-world instances with diverse sizes, to demonstrate the tightness of the analytical bounds and efficacy of the approximation algorithms. We find that the gaps between risk-averse multistage and two-stage models increase as the variability of the uncertain parameters increases and decrease as the decision maker becomes more risk averse. Moreover, a stagewise-dependent scenario tree attains much higher gaps than a stagewise-independent counterpart, whereas the latter produces tighter analytical bounds. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This work of Dr. X. Yu was partially supported by the U.S. National Science Foundation Division of Information and Intelligent Systems [Grant 2331782]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0396 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0396 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .more » « less
-
We study decision rule approximations for generic multistage robust linear optimization problems. We examine linear decision rules for the case when the objective coefficients, the recourse matrices, and the right-hand sides are uncertain, and we explore quadratic decision rules for the case when only the right-hand sides are uncertain. The resulting optimization problems are NP hard but amenable to copositive programming reformulations that give rise to tight, tractable semidefinite programming solution approaches. We further enhance these approximations through new piecewise decision rule schemes. Finally, we prove that our proposed approximations are tighter than the state-of-the-art schemes and demonstrate their superiority through numerical experiments.more » « less
-
Sparse decision tree optimization has been one of the most fundamental problems in AI since its inception and is a challenge at the core of interpretable machine learning. Sparse decision tree optimization is computationally hard, and despite steady effort since the 1960's, breakthroughs have been made on the problem only within the past few years, primarily on the problem of finding optimal sparse decision trees. However, current state-of-the-art algorithms often require impractical amounts of computation time and memory to find optimal or near-optimal trees for some real-world datasets, particularly those having several continuous-valued features. Given that the search spaces of these decision tree optimization problems are massive, can we practically hope to find a sparse decision tree that competes in accuracy with a black box machine learning model? We address this problem via smart guessing strategies that can be applied to any optimal branch-and-bound-based decision tree algorithm. The guesses come from knowledge gleaned from black box models. We show that by using these guesses, we can reduce the run time by multiple orders of magnitude while providing bounds on how far the resulting trees can deviate from the black box's accuracy and expressive power. Our approach enables guesses about how to bin continuous features, the size of the tree, and lower bounds on the error for the optimal decision tree. Our experiments show that in many cases we can rapidly construct sparse decision trees that match the accuracy of black box models. To summarize: when you are having trouble optimizing, just guess.more » « less
An official website of the United States government
