skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 5, 2026

Title: Iron‐Sulfur Clusters: Biogenesis and Biochemistry
The biological synthesis of iron–sulfur (Fe–S) clusters requires dedicated pathways involved in the recruitment and activation of Fe and S for cluster assembly with subsequent transfer of preformed clusters to acceptor proteins. Several pathways have been described that include various numbers and types of biosynthetic components, although all of them share the same basic principles for [Fe–S] cluster formation and delivery to target proteins. The NifUS system was discovered and first described in studies involving the model diazotroph Azotobacter vinelandii . It has a dedicated role in serving as the starting point for the activation of [Fe–S] cluster-containing proteins specifically involved in biological nitrogen fixation. NifS is a pyridoxal-5′-phosphate containing l -cysteine-dependent sulfur transferase that delivers activated sulfur to the three-domain NifU, which not only serves as a scaffold for the construction of [2Fe–2S] and [4Fe–4S] clusters but also participates in their delivery to various target proteins involved in nitrogen fixation. Interestingly, analysis of sequenced genomes reveals that the three-domain NifU and NifU-like encoded proteins are not limited to diazotrophs, suggesting a broader role for this system in [Fe–S] cluster biogenesis in other organisms. The colocalization of adjacent nifU and nifS encoding sequences in most of these genomes also provides a strong indication for the involvement of the NifU–NifS [Fe–S] cluster assembly and delivery toolkit for activation of [Fe–S] cluster-containing proteins in a variety of organisms that do not fix nitrogen.  more » « less
Award ID(s):
2335999
PAR ID:
10659168
Author(s) / Creator(s):
; ; ;
Editor(s):
Leimkühler, Silke; Schwarz, Günter; Lenz, Oliver; Einsle, Oliver
Publisher / Repository:
Wiley
Date Published:
Volume:
1
Issue:
1
ISBN:
9783527352555
Page Range / eLocation ID:
257-286
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Yount, Jacob (Ed.)
    ABSTRACT Building iron-sulfur (Fe-S) clusters and assembling Fe-S proteins are essential actions for life on Earth. The three processes that sustain life, photosynthesis, nitrogen fixation, and respiration, require Fe-S proteins. Genes coding for Fe-S proteins can be found in nearly every sequenced genome. Fe-S proteins have a wide variety of functions, and therefore, defective assembly of Fe-S proteins results in cell death or global metabolic defects. Compared to alternative essential cellular processes, there is less known about Fe-S cluster synthesis and Fe-S protein maturation. Moreover, new factors involved in Fe-S protein assembly continue to be discovered. These facts highlight the growing need to develop a deeper biological understanding of Fe-S cluster synthesis, holo-protein maturation, and Fe-S cluster repair. Here, we outline bacterial strategies used to assemble Fe-S proteins and the genetic regulation of these processes. We focus on recent and relevant findings and discuss future directions, including the proposal of using Fe-S protein assembly as an antipathogen target. 
    more » « less
  2. Dos Santos, P.C. (Ed.)
    Biological iron-sulfur (Fe-S) clusters are essential protein prosthetic groups that promote a range of biochemical reactions. In vivo, these clusters are synthesized by specialized protein machineries involved in sulfur mobilization, cluster assembly, and cluster transfer to their target proteins. Cysteine desulfurases initiate the first step of sulfur activation and mobilization in cluster biosynthetic pathways. The reaction catalyzed by these enzymes involves the abstraction of sulfur from the amino acid l-cysteine, with concomitant formation of alanine. The presence and availability of a sulfur acceptor modulate the sulfurtransferase activity of this class of enzymes by altering their reaction profile and catalytic turnover rate. Herein, we describe two methods used to probe the reaction profile of cysteine desulfurases through quantification of alanine and sulfide production in these reactions. 
    more » « less
  3. Dos Santos, P.C. (Ed.)
    Iron-Sulfur (Fe-S) clusters function as core prosthetic groups known to modulate the activity of metalloenzymes, act as trafficking vehicles for biological iron and sulfur, and participate in several intersecting metabolic pathways. The formation of these clusters is initiated by a class of enzymes called cysteine desulfurases, whose primary function is to shuttle sulfur from the amino acid l-cysteine to a variety of sulfur transfer proteins involved in Fe-S cluster synthesis as well as in the synthesis of other thiocofactors. Thus, sulfur and Fe-S cluster metabolism are connected through shared enzyme intermediates, and defects in their associated pathways cause a myriad of pleiotropic phenotypes, which are difficult to dissect. Post-transcriptionally modified transfer RNA (tRNA) represents a large class of analytes whose synthesis often requires the coordinated participation of sulfur transfer and Fe-S enzymes. Therefore, these molecules can be used as biologically relevant readouts for cellular Fe and S status. Methods employing LC-MS technology provide a valuable experimental tool to determine the relative levels of tRNA modification in biological samples and, consequently, to assess genetic, nutritional, and environmental factors modulating reactions dependent on Fe-S clusters. Herein, we describe a robust method for extracting RNA and analytically evaluating the degree of Fe-S-dependent and -independent tRNA modifications via an LC-MS platform. 
    more » « less
  4. Abstract Iron–sulfur (Fe–S) proteins are essential for the ability of methanogens to carry out methanogenesis and biological nitrogen fixation (diazotrophy). Nonetheless, the factors involved in Fe–S cluster biogenesis in methanogens remain largely unknown. The minimal SUF Fe–S cluster biogenesis system (i.e., SufBC) is postulated to serve as the primary system in methanogens. Here, the role of SufBC inMethanosarcina acetivorans, which contains twosufCBgene clusters, was investigated. The CRISPRi-dCas9 and CRISPR-Cas9 systems were utilized to repress or deletesufC1B1andsufC2B2, respectively. Neither the dual repression ofsufC1B1andsufC2B2nor the deletion of bothsufC1B1andsufC2B2affected the growth ofM. acetivoransunder any conditions tested, including diazotrophy. Interestingly, deletion of onlysufC1B1led to a delayed-growth phenotype under all growth conditions, suggesting that the deletion ofsufC2B2acts as a suppressor mutation in the absence ofsufC1B1. In addition, the deletion ofsufC1B1and/orsufC2B2did not affect the total Fe–S cluster content inM. acetivoranscells. Overall, these results reveal that the minimal SUF system is not required for Fe–S cluster biogenesis inM. acetivoransand challenge the universal role of SufBC in Fe–S cluster biogenesis in methanogens. 
    more » « less
  5. null (Ed.)
    Abstract Background The production of methane by methanogens is dependent on numerous iron-sulfur (Fe-S) cluster proteins; yet, the machinery involved in Fe-S cluster biogenesis in methanogens remains largely unknown. Methanogen genomes encode uncharacterized homologs of the core components of the ISC (IscS and IscU) and SUF (SufBC) Fe-S cluster biogenesis systems found in bacteria and eukaryotes. Methanosarcina acetivorans contains three iscSU and two sufCB gene clusters. Here, we report genetic and biochemical characterization of M. acetivorans iscSU2 . Results Purified IscS2 exhibited pyridoxal 5′- phosphate-dependent release of sulfur from L-cysteine. Incubation of purified IscU2 with IscS2, cysteine, and iron (Fe 2+ ) resulted in the formation of [4Fe-4S] clusters in IscU2. IscU2 transferred a [4Fe-4S] cluster to purified M. acetivorans apo-aconitase. IscU2 also restored the aconitase activity in air-exposed M. acetivorans cell lysate. These biochemical results demonstrate that IscS2 is a cysteine desulfurase and that IscU2 is a Fe-S cluster scaffold. M. acetivorans strain DJL60 deleted of iscSU2 was generated to ascertain the in vivo importance of IscSU2. Strain DJL60 had Fe-S cluster content and growth similar to the parent strain but lower cysteine desulfurase activity. Strain DJL60 also had lower intracellular persulfide content compared to the parent strain when cysteine was an exogenous sulfur source, linking IscSU2 to sulfur metabolism. Conclusions This study establishes that M. acetivorans contains functional IscS and IscU, the core components of the ISC Fe-S cluster biogenesis system and provides the first evidence that ISC operates in methanogens. 
    more » « less