skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 21, 2026

Title: The CHARA Array Polarization Model and Prospects for Spectropolarimetry
Abstract Polarimetric data provide key insights into infrared emission mechanisms in the inner disks of young stellar objects (YSOs) and the details of dust formation around asymptotic giant branch (AGB) stars. While polarization measurements are well-established in radio interferometry, they remain challenging at visible and near-infrared wavelengths, due to the significant time-variable birefringence introduced by the complex optical beam train. In this study, we characterize instrumental polarization effects within the optical path of the Center for High Angular Resolution Astronomy (CHARA) Array, focusing on theH-band MIRC-X andK-band MYSTIC beam combiners. Using the Jones matrix formalism, we developed a comprehensive model describing diattenuation and retardance across the array. By applying this model to an unpolarized calibrator, we derived the instrumental parameters for both MIRC-X and MYSTIC. Our results show differential diattenuation consistent with ≥97% reflectivity per aluminum-coated surface at 45° incidence. The differential retardance exhibits small wavelength-dependent variations, in some cases larger than we expected. Notably, telescope W2 exhibits a significantly larger phase shift in the Coudé path, attributable to a fixed aluminum mirror (M4) used in place of deformable mirrors present on the other telescopes during the observing run. We also identify misalignments in the LiNbO3birefringent compensator plates on S1 (MIRC-X) and W2 (MYSTIC). After correcting for night-to-night offsets, we achieve calibration accuracies of ±3.4% in visibility ratio and ± 1 . ° 4 in differential phase for MIRC-X, and ±5.9% and ± 2 . ° 4 , respectively, for MYSTIC. Given that the differential intrinsic polarization of spatially resolved sources, such as AGB stars and YSOs, typically greater than these instrumental uncertainties, our results demonstrate that CHARA is now capable of achieving high-accuracy measurements of intrinsic polarization in astrophysical targets.  more » « less
Award ID(s):
2407956 2034336
PAR ID:
10659331
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Astronomical Society / IOP
Date Published:
Journal Name:
The Astronomical Journal
Volume:
170
Issue:
6
ISSN:
0004-6256
Page Range / eLocation ID:
344
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cosmic reionization was the last major phase transition of hydrogen from neutral to highly ionized in the intergalactic medium (IGM). Current observations show that the IGM is significantly neutral atz> 7 and largely ionized byz∼ 5.5. However, most methods to measure the IGM neutral fraction are highly model dependent and are limited to when the volume-averaged neutral fraction of the IGM is either relatively low ( x ¯ H I 10 3 ) or close to unity ( x ¯ H I 1 ). In particular, the neutral fraction evolution of the IGM at the critical redshift range ofz= 6–7 is poorly constrained. We present new constraints on x ¯ H I atz∼ 5.1–6.8 by analyzing deep optical spectra of 53 quasars at 5.73 <z< 7.09. We derive model-independent upper limits on the neutral hydrogen fraction based on the fraction of “dark” pixels identified in the Lyαand Lyβforests, without any assumptions on the IGM model or the intrinsic shape of the quasar continuum. They are the first model-independent constraints on the IGM neutral hydrogen fraction atz∼ 6.2–6.8 using quasar absorption measurements. Our results give upper limits of x ¯ H I ( z = 6.3 ) < 0.79 ± 0.04 (1σ), x ¯ H I ( z = 6.5 ) < 0.87 ± 0.03 (1σ), and x ¯ H I ( z = 6.7 ) < 0.94 0.09 + 0.06 (1σ). The dark pixel fractions atz> 6.1 are consistent with the redshift evolution of the neutral fraction of the IGM derived from Planck 2018. 
    more » « less
  2. Abstract Accretion rates ( M ̇ ) of young stars show a strong correlation with object mass (M); however, extension of the M ̇ M relation into the substellar regime is less certain. Here, we present the Comprehensive Archive of Substellar and Planetary Accretion Rates (CASPAR), the largest compilation to date of substellar accretion diagnostics. CASPAR includes: 658 stars, 130 brown dwarfs, and 10 bound planetary mass companions. In this work, we investigate the contribution of methodological systematics to scatter in the M ̇ M relation and compare brown dwarfs to stars. In our analysis, we rederive all quantities using self-consistent models, distances, and empirical line flux to accretion luminosity scaling relations to reduce methodological systematics. This treatment decreases the original 1σscatter in the log M ̇ log M relation by ∼17%, suggesting that it makes only a small contribution to the dispersion. The CASPAR rederived values are best fit by M ̇ M 2.02 ± 0.06 from 10MJto 2M, confirming previous results. However, we argue that the brown-dwarf and stellar populations are better described separately and by accounting for both mass and age. Therefore, we derive separate age-dependent M ̇ M relations for these regions and find a steepening in the brown-dwarf M ̇ M slope with age. Within this mass regime, the scatter decreases from 1.36 dex to 0.94 dex, a change of ∼44%. This result highlights the significant role that evolution plays in the overall spread of accretion rates, and suggests that brown dwarfs evolve faster than stars, potentially as a result of different accretion mechanisms. 
    more » « less
  3. Let K / Q p K/\mathbb {Q}_p be a finite unramified extension, ρ<#comment/> ¯<#comment/> : G a l ( Q ¯<#comment/> p / K ) →<#comment/> G L n ( F ¯<#comment/> p ) \overline {\rho }:\mathrm {Gal}(\overline {\mathbb {Q}}_p/K)\rightarrow \mathrm {GL}_n(\overline {\mathbb {F}}_p) a continuous representation, and τ<#comment/> \tau a tame inertial type of dimension n n . We explicitly determine, under mild regularity conditions on τ<#comment/> \tau , the potentially crystalline deformation ring R ρ<#comment/> ¯<#comment/> η<#comment/> , τ<#comment/> R^{\eta ,\tau }_{\overline {\rho }} in parallel Hodge–Tate weights η<#comment/> = ( n −<#comment/> 1 , ⋯<#comment/> , 1 , 0 ) \eta =(n-1,\cdots ,1,0) and inertial type τ<#comment/> \tau when theshapeof ρ<#comment/> ¯<#comment/> \overline {\rho } with respect to τ<#comment/> \tau has colength at most one. This has application to the modularity of a class of shadow weights in the weight part of Serre’s conjecture. Along the way we make unconditional the local-global compatibility results of Park and Qian [Mém. Soc. Math. Fr. (N.S.) 173 (2022), pp. vi+150]. 
    more » « less
  4. Abstract Magnetized plasma columns and extended magnetic structures with both footpoints anchored to a surface layer are an important building block of astrophysical dissipation models. Current loops shining in X-rays during the growth of plasma instabilities are observed in the corona of the Sun and are expected to exist in highly magnetized neutron star magnetospheres and accretion disk coronae. For varying twist and system sizes, we investigate the stability of line-tied force-free flux tubes and the dissipation of twist energy during instabilities using linear analysis and time-dependent force-free electrodynamics simulations. Kink modes (m= 1) and efficient magnetic energy dissipation develop for plasma safety factorsq≲ 1, whereqis the inverse of the number of magnetic field line windings per column length. Higher-order fluting modes (m> 1) can distort equilibrium flux tubes forq> 1 but induce significantly less dissipation. In our analysis, the characteristic pitch μ ˜ 0 of flux-tube field lines determines the growth rate ( μ ˜ 0 3 ) and minimum wavelength of the kink instability ( μ ˜ 0 1 ). We use these scalings to determine a minimum flux tube length for the growth of the kink instability for any given μ ˜ 0 . By drawing analogies to idealized magnetar magnetospheres with varying regimes of boundary shearing rates, we discuss the expected impact of the pitch-dependent growth rates for magnetospheric dissipation in magnetar conditions. 
    more » « less
  5. Abstract State transitions in black hole X-ray binaries are likely caused by gas evaporation from a thin accretion disk into a hot corona. We present a height-integrated version of this process, which is suitable for analytical and numerical studies. With radiusrscaled to Schwarzschild units and coronal mass accretion rate m ̇ c to Eddington units, the results of the model are independent of black hole mass. State transitions should thus be similar in X-ray binaries and an active galactic nucleus. The corona solution consists of two power-law segments separated at a break radiusrb∼ 103(α/0.3)−2, whereαis the viscosity parameter. Gas evaporates from the disk to the corona forr>rb, and condenses back forr<rb. Atrb, m ̇ c reaches its maximum, m ̇ c , max 0.02 ( α / 0.3 ) 3 . If atr≫rbthe thin disk accretes with m ̇ d < m ̇ c , max , then the disk evaporates fully before reachingrb, giving the hard state. Otherwise, the disk survives at all radii, giving the thermal state. While the basic model considers only bremsstrahlung cooling and viscous heating, we also discuss a more realistic model that includes Compton cooling and direct coronal heating by energy transport from the disk. Solutions are again independent of black hole mass, andrbremains unchanged. This model predicts strong coronal winds forr>rb, and aT∼ 5 × 108K Compton-cooled corona forr<rb. Two-temperature effects are ignored, but may be important at small radii. 
    more » « less