Abstract Objective. Arterial viscosity is emerging as an important biomarker, in addition to the widely used arterial elasticity. This paper presents an approach to estimate arterial viscoelasticity using shear wave elastography (SWE).Approach. While dispersion characteristics are often used to estimate elasticity from SWE data, they are not sufficiently sensitive to viscosity. Driven by this, we develop a full waveform inversion (FWI) methodology, based on directly matching predicted and measured wall velocity in space and time, to simultaneously estimate both elasticity and viscosity. Specifically, we propose to minimize an objective function capturing the correlation between measured and predicted responses of the anterior wall of the artery.Results. The objective function is shown to be well-behaving (generally convex), leading us to effectively use gradient optimization to invert for both elasticity and viscosity. The resulting methodology is verified with synthetic data polluted with noise, leading to the conclusion that the proposed FWI is effective in estimating arterial viscoelasticity.Significance. Accurate estimation of arterial viscoelasticity, not just elasticity, provides a more precise characterization of arterial mechanical properties, potentially leading to a better indicator of arterial health.
more »
« less
This content will become publicly available on August 1, 2026
Twin Peak Method for Estimating Tissue Viscoelasticity Using Shear Wave Elastography
Tissue viscoelasticity is becoming an increasingly useful biomarker beyond elasticity and can theoretically be estimated using shear wave elastography by inverting the propagation and attenuation characteristics of shear waves. Estimating viscosity is often more difficult than elasticity because attenuation, the main effect of viscosity, leads to poor signal-to-noise ratio of the shear wave motion. In the present work, we provide an alternative to existing methods of viscoelasticity estimation, based on peaks in the frequency–wavenumber (f–k) domain, which are considered more robust against noise compared with other features in the f–k domain. Specifically, the method minimizes the difference between simulated and measured versions of two sets of peaks (twin peaks) in the f–k domain, obtained first by traversing through each frequency and then by traversing through each wavenumber. The slopes and deviation of the twin peaks are sensitive to elasticity and viscosity, respectively, leading to the effectiveness of the proposed inversion algorithm for characterizing mechanical properties. This expected effectiveness is confirmed through in silico verification, followed by ex vivo validation and in vivo application, indicating that the proposed approach can be used effectively in accurately estimating viscoelasticity, thus potentially contributing to the development of enhanced biomarkers.
more »
« less
- Award ID(s):
- 2111234
- PAR ID:
- 10659424
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Ultrasound in Medicine & Biology
- Volume:
- 51
- Issue:
- 8
- ISSN:
- 0301-5629
- Page Range / eLocation ID:
- 1160 to 1171
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Objective. Motivated by the diagnostic value of tissue viscosity beyond elasticity, the goal of this work is to develop robust methodologies based on shear wave elastography (SWE) to reconstruct combined elasticity and viscosity maps of soft tissues out of the measurement plane.Approach.Building on recent advancements in full-waveform inversion in reconstructing elasticity maps beyond the measurement plane, we propose to reconstruct a complete viscoelasticity map by novel combination of three ideas: (a) multiresolution imaging, where lower frequency content is used to reconstruct low resolution map, which is then utilized as a starting point for higher resolution reconstruction by including higher frequency content; (b) acquiring SWE data on multiple planes from multiple pushes, one at a time, and then simultaneously using all the data to invert for a single viscoelasticity map; (c) sequential reconstruction where combined viscoelasticity reconstruction is followed by fixing the elasticity map (and thus kinematics), and repeating the reconstruction but just for the viscosity map.Main results.We examine the proposed methodology using synthetic SWE data to reconstruct the viscoelastic properties of both homogeneous and heterogeneous tumor-like inclusions with shear modulus ranging from 3 to 20 kPa, and viscosity ranging from 1 to 3 Pa·s. Final validation is performedin silico, where the annular inclusion is reconstructed using noisy data with varying signal-to-noise ratios (SNR) of 30, 20 and 10 dB. While elasticity images are reasonably reconstructed even for poor SNR of 10 dB, viscosity imaging seem to require better SNR.Significance.This work, analogous to reconstructing 3D images from 2D measurements, offers a feasibility study for achieving 3D viscoelasticity reconstructions using conventional ultrasound scanners, potentially leading to biomarkers with greater specificity compared to currently available 2D elasticity images.more » « less
-
Abstract Characterizing the mechanical properties of viscoelastic materials is critical in biomedical applications such as detecting breast cancer, skin diseases, myocardial diseases, and hepatic fibrosis. Current methods lack the consideration of dispersion curves that depend on material properties and shear wave frequency. This paper presents a novel method that combines noncontact shear wave sensing and dispersion analysis to characterize the mechanical properties of viscoelastic materials. Our shear wave sensing system uses a piezoelectric stack (PZT stack) to generate shear waves and a laser Doppler vibrometer (LDV) integrated with a 3D robotic stage to acquire time-space wavefields. Next, an inverse method is employed for the wavefield analysis. This method leverages multi-dimensional Fourier transform and frequency-wavenumber dispersion curve regression. Through proof-of-concept experiments, our sensing system successfully generated shear waves and acquired its timespace wavefield in a customized viscoelastic phantom. After dispersion curve analysis, we successfully characterized two material properties (shear elasticity and shear viscosity) and measured shear wave velocities at different frequencies.more » « less
-
Abstract This paper describes the propagation of shear waves in a Holzapfel–Gasser–Ogden (HGO) material and investigates the potential of magnetic resonance elastography (MRE) for estimating parameters of the HGO material model from experimental data. In most MRE studies the behavior of the material is assumed to be governed by linear, isotropic elasticity or viscoelasticity. In contrast, biological tissue is often nonlinear and anisotropic with a fibrous structure. In such materials, application of a quasi-static deformation (predeformation) plays an important role in shear wave propagation. Closed form expressions for shear wave speeds in an HGO material with a single family of fibers were found in a reference (undeformed) configuration and after imposed predeformations. These analytical expressions show that shear wave speeds are affected by the parameters (μ0, k1, k2, κ) of the HGO model and by the direction and amplitude of the predeformations. Simulations of corresponding finite element (FE) models confirm the predicted influence of HGO model parameters on speeds of shear waves with specific polarization and propagation directions. Importantly, the dependence of wave speeds on the parameters of the HGO model and imposed deformations could ultimately allow the noninvasive estimation of material parameters in vivo from experimental shear wave image data.more » « less
-
null (Ed.)Abstract Energy dissipation in polymeric composite metamaterials requires special mathematical models owing to the viscoelastic nature of their constituents, namely, the polymeric matrix, bonding agent, and local resonators. Unlike traditional composites, viscoelastic metamaterials possess a unique ability to exhibit strong wave attenuation while retaining high stiffness as a result of the “metadamping” phenomenon attributed to local resonances. The objective of this work is to investigate viscoelastic metadamping in one-dimensional multibandgap metamaterials by combining the linear hereditary theory of viscoelasticity with the Floquet-Bloch theory of wave propagation in infinite elastic media. Important distinctions between metamaterial and phononic unit cell models are explained based on the free wave approach with wavenumber-eliminated damping-frequency band structures. The developed model enables viscoelastic metadamping to be investigated by varying two independent relaxation parameters describing the viscoelasticity level in the host structure and the integrated resonators. The dispersion mechanics within high damping regimes and the effects of boundary conditions on the damped response are detailed. The results reveal that in a multiresonator cell, strategic damping placement in the individual resonators plays a profound role in shaping intermediate dispersion branches and dictating the primary and secondary frequency regions of interest, within which attenuation is most required.more » « less
An official website of the United States government
