skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Strategic Damping Placement in Viscoelastic Bandgap Structures: Dissecting the Metadamping Phenomenon in Multiresonator Metamaterials
Abstract Energy dissipation in polymeric composite metamaterials requires special mathematical models owing to the viscoelastic nature of their constituents, namely, the polymeric matrix, bonding agent, and local resonators. Unlike traditional composites, viscoelastic metamaterials possess a unique ability to exhibit strong wave attenuation while retaining high stiffness as a result of the “metadamping” phenomenon attributed to local resonances. The objective of this work is to investigate viscoelastic metadamping in one-dimensional multibandgap metamaterials by combining the linear hereditary theory of viscoelasticity with the Floquet-Bloch theory of wave propagation in infinite elastic media. Important distinctions between metamaterial and phononic unit cell models are explained based on the free wave approach with wavenumber-eliminated damping-frequency band structures. The developed model enables viscoelastic metadamping to be investigated by varying two independent relaxation parameters describing the viscoelasticity level in the host structure and the integrated resonators. The dispersion mechanics within high damping regimes and the effects of boundary conditions on the damped response are detailed. The results reveal that in a multiresonator cell, strategic damping placement in the individual resonators plays a profound role in shaping intermediate dispersion branches and dictating the primary and secondary frequency regions of interest, within which attenuation is most required.  more » « less
Award ID(s):
1847254
PAR ID:
10200286
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Applied Mechanics
Volume:
88
Issue:
2
ISSN:
0021-8936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Membrane viscosity is an important property of cell biology, which determines cellular function, development and disease progression. Various experimental and computational methods have been developed to investigate the mechanics of cells. However, there have been no experimental measurements of the membrane viscosity at high-frequencies in live cells. High frequency measurements are important because they can probe viscoelastic effects. Here, we investigate the membrane viscosity at gigahertz-frequencies through the damping of the acoustic vibrations of gold nanoplates. The experiments are modeled using a continuum mechanics theory which reveals that the membranes display viscoelasticity, with an estimated relaxation time of ca. ps. We further demonstrate that membrane viscoelasticity can be used to differentiate a cancerous cell line (the human glioblastoma cells LN-18) from a normal cell line (the mouse brain microvascular endothelial cells bEnd.3). The viscosity of cancerous cells LN-18 is lower than that of healthy cells bEnd.3 by a factor of three. The results indicate promising applications of characterizing membrane viscoelasticity at gigahertz-frequency in cell diagnosis. 
    more » « less
  2.  
    more » « less
  3. aser Doppler vibrometry and wavefield analysis have recently shown great potential for nondestructive evaluation, structural health monitoring, and studying wave physics. However, there are limited studies on these approaches for viscoelastic soft materials, especially, very few studies on the laser Doppler vibrometer (LDV)-based acquisition of time–space wavefields of dispersive shear waves in viscoelastic materials and the analysis of these wavefields for characterizing shear wave dispersion and evaluating local viscoelastic property distributions. Therefore, this research focuses on developing a piezo stack-LDV system and shear wave time–space wavefield analysis methods for enabling the functions of characterizing the shear wave dispersion and the distributions of local viscoelastic material properties. Our system leverages a piezo stack to generate shear waves in viscoelastic materials and an LDV to acquire time–space wavefields. We introduced space-frequency-wavenumber analysis and least square regression-based dispersion comparison to analyze shear wave time–space wavefields and offer functions including extracting shear wave dispersion relations from wavefields and characterizing the spatial distributions of local wavenumbers and viscoelastic properties (e.g., shear elasticity and viscosity). Proof-of-concept experiments were performed using a synthetic gelatin phantom. The results show that our system can successfully generate shear waves and acquire time–space wavefields. They also prove that our wavefield analysis methods can reveal the shear wave dispersion relation and show the spatial distributions of local wavenumbers and viscoelastic properties. We expect this research to benefit engineering and biomedical research communities and inspire researchers interested in developing shear wave-based technologies for characterizing viscoelastic materials. 
    more » « less
  4. Within the field of elastic metamaterials, topological metamaterials have recently received much attention due to their ability to host topologically robust edge states. Introducing local resonators to these metamaterials also opens the door for many applications such as energy harvesting and reconfigurable metamaterials. However, the interactions between phenomena from local resonance and modulation patterning are currently unknown. This work fills that gap by studying multiple cases of spatially modulated metamaterials with local resonators to reveal the mechanisms behind bandgap formation. Their dispersion relations are determined analytically for infinite chains and validated numerically using eigenvalue analysis. The inverse method is used to determine the imaginary wavenumber components from which each bandgap is characterized by its formation mechanism. The topological nature of the bandgaps is also explored through calculating the Chern number and integrated density of states. The band structures are obtained for various sources of modulation as well as multiple resonator parameters to illustrate how both local resonance and modulation patterning interact together to influence the band structure. Other unique features of these metamaterials are further demonstrated through the mode shapes obtained using the eigenvectors. The results reveal a complex band structure that is highly tunable, and the observations given here can be used to guide designers in choosing resonator parameters and patterning to fit a variety of applications.

     
    more » « less
  5. Abstract

    The objective of this paper is to unveil a novel damping mechanism exhibited by 3D woven lattice materials (3DW), with emphasis on response to high-frequency excitations. Conventional bulk damping materials, such as rubber, exhibit relatively low stiffness, while stiff metals and ceramics typically have negligible damping. Here we demonstrate that high damping and structural stiffness can be simultaneously achieved in 3D woven lattice materials by brazing only select lattice joints, resulting in a load-bearing lattice frame intertwined with free, ‘floating’ lattice members to generate damping. The produced material samples are comparable to polymers in terms of damping coefficient, but are porous and have much higher maximum use temperature. We shed light on a novel damping mechanism enabled by an interplay between the forcing frequency imposed onto a load-bearing lattice frame and the motion of the embedded, free-moving lattice members. This novel class of damping metamaterials has potential use in a broad range of weight sensitive applications that require vibration attenuation at high frequencies.

     
    more » « less