The conformal nanoporous inorganic coatings with accessible pores that are stable under applied thermal and mechanical stresses represent an important class of materials used in the design of sensors, optical coatings, and biomedical systems. Here, we synthesize porous AlOx and ZnO coatings by the sequential infiltration synthesis (SIS) of two types of polymers that enable the design of porous conformal coatings—polymers of intrinsic microporosity (PIM) and block co-polymer (BCP) templates. Using quartz crystal microbalance (QCM), we show that alumina precursors infiltrate both polymer templates four times more efficiently than zinc oxide precursors. Using the quartz crystal microbalance (QCM) technique, we provide a comprehensive study on the room temperature accessibility to water and ethanol of pores in block copolymers (BCPs) and porous polymer templates using polystyrene-block-poly-4-vinyl pyridine (PS75-b-P4VP25) and polymers of intrinsic microporosity (PIM-1), polymer templates modified by swelling, and porous inorganic coatings such as AlOx and ZnO synthesized by SIS using such templates. Importantly, we demonstrate that no structural damage occurs in inorganic nanoporous AlOx and ZnO coatings synthesized via infiltration of the polymer templates during the water freezing/melting cycling tests, suggesting excellent mechanical stability of the coatings, even though the hardness of the inorganic nanoporous coating is affected by the polymer and precursor selections. We show that the hardness of the coatings is further improved by their annealing at 900 °C for 1 h, though for all the cases except ZnO obtained using the BCP template, this annealing has a negligible effect on the porosity of the material, as is confirmed by the consistency in the optical characteristics. These findings unravel new potential for the materials being used across various environment and temperature conditions.
more »
« less
This content will become publicly available on October 1, 2026
Block Copolymer-Templated Synthesis of Fe–Ni–Co-Modified Nanoporous Alumina Films
Despite intense interest in the catalytic potential of transition metal oxide heterostructures, originating from their large surface area and tunable chemistry, the fabrication of well-defined multicomponent oxide coatings with controlled architectures remains challenging. Here, we demonstrate a simple and effective swelling-assisted sequential infiltration synthesis (SIS) strategy to fabricate hierarchically porous multicomponent metal-oxide electrocatalysts with tunable bimetallic composition. A combination of solution-based infiltration (SBI) of transition metals, iron (Fe), nickel (Ni), and cobalt (Co), into a block copolymer (PS73-b-P4VP28) template, followed by vapor-phase infiltration of alumina using sequential infiltration synthesis (SIS), was employed to synthesize porous, robust, conformal and transparent multicomponent metal-oxide coatings like Fe/AlOx, Fe+Ni/AlOx, and Fe+Co/AlOx. Electrochemical assessments for the oxygen evolution reaction (OER) in a 0.1 M KOH electrolyte demonstrated that the Fe+Ni/AlOx composite exhibited markedly superior catalytic activity, achieving an impressive onset potential of 1.41 V and a peak current density of 3.29 mA/cm2. This superior activity reflects the well-known synergistic effect of alloying transition metals with a trace of Fe, which facilitates OER kinetics. Overall, our approach offers a versatile and scalable path towards the design of stable and efficient catalysts with tunable nanostructures, opening new possibilities for a wide range of electrochemical energy applications.
more »
« less
- Award ID(s):
- 2045662
- PAR ID:
- 10659445
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 15
- Issue:
- 19
- ISSN:
- 2076-3417
- Page Range / eLocation ID:
- 10473
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Energy harvesting from solar and water has created ripples in materials energy research for the last several decades, complemented by the rise of Hydrogen as a clean fuel. Among these, water electrolysis leading to generation of oxygen and hydrogen, has been one of the most promising routes towards sustainable alternative energy generation and storage, with applications ranging from metal-air batteries, fuel cells, to solar-to-fuel energy conversion systems. In fact, solar water splitting is one of the most promising method to produce Hydrogen without depleting fossil-fuel based natural resources. However, the efficiency and practical feasibility of water electrolysis is limited by the anodic oxygen evolution reaction (OER), which is a kinetically sluggish, electron-intensive uphill reaction. A slow OER process also slows the other half- cell reaction, i.e. the hydrogen evolution reaction (HER) at the cathode. Hence, designing efficient catalysts for OER process from earth-abundant resources has been one of the primary concerns for advancing solar water splitting. In the Nath group we have focused on transition metal chalcogenides as efficient OER electrocatalysts. We have proposed the idea that these chalcogenides, specifically, selenides and tellurides will show much better OER catalytic activity due to increasing covalency around the catalytically active transition metal site, compared to the oxides caused by decreasing electronegativity of the anion, which in turn leads to variation of chem. potential around the transition metal center, [e.g. lowering the Ni 2+ --> Ni 3+ oxidn. potential in Ni-based catalysts where Ni 3+ is the actually catalytically active species]. Based on such hypothesis, we have synthesized a plethora of transition metal selenides including those based on Ni, Ni-Fe, Co, and Ni-Co, which show high catalytic efficiency characterized by low onset potential and overpotential at 10 mA/cm 2 [Ni 3 Se 2 - 200 - 290 mV; Co 7 Se 8 - 260 mV; FeNi 2 Se 4 -NrGO - 170 mV (NrGO - N-doped reduced graphene oxide); NiFe 2 Se 4 - 210 mV; CoNi 2 Se 4 - 190 mV; Ni 3 Te 2 - 180 mV].more » « less
-
Abstract High‐efficiency and low‐cost catalysts for oxygen evolution reaction (OER) are critical for electrochemical water splitting to generate hydrogen, which is a clean fuel for sustainable energy conversion and storage. Among the emerging OER catalysts, transition metal dichalcogenides have exhibited superior activity compared to commercial standards such as RuO2, but inferior stability due to uncontrolled restructuring with OER. In this study, we create bimetallic sulfide catalysts by adapting the atomic ratio of Ni and Co in CoxNi1‐xSyelectrocatalysts to investigate the intricate restructuring processes. Surface‐sensitive X‐ray photoelectron spectroscopy and bulk‐sensitive X‐ray absorption spectroscopy confirmed the favorable restructuring of transition metal sulfide material following OER processes. Our results indicate that a small amount of Ni substitution can reshape the Co local electronic structure, which regulates the restructuring process to optimize the balance between OER activity and stability. This work represents a significant advancement in the development of efficient and noble metal‐free OER electrocatalysts through a doping‐regulated restructuring approach.more » « less
-
Water splitting has been widely considered to be an efficient way to generate sustainable and renewable energy resources in fuel cells, metal–air batteries and other energy conversion devices. Exploring efficient electrocatalysts to expedite the anodic oxygen evolution reaction (OER) is a crucial task that needs to be addressed in order to boost the practical application of water splitting. Intensive efforts have been devoted to develop mixed transition metal based chalcogenides as effective OER electrocatalysts. Herein, we have reported synthesis of a series of mixed metal selenides containing Co, Ni and Cu employing combinatorial electrodeposition, and systematically investigated how the transition metal doping affects the OER catalytic activity in alkaline medium. Energy dispersive spectroscopy (EDS) was performed to detect the elemental compositions and confirm the feasibility of compositional control of 66 metal selenide thin films. It was observed that the OER catalytic activity is sensitive to the concentration of Cu in the catalysts, and the catalyst activity tended to increase with increasing Cu concentration. However, increasing the Cu concentration beyond a certain limit led to decrease in catalytic efficiency, and copper selenide by itself, although catalytically active, showed higher onset potential and overpotential for OER compared to the ternary and quaternary mixed metal selenides. Interestingly, the best quaternary composition (Co 0.21 Ni 0.25 Cu 0.54 ) 3 Se 2 showed similar crystal structure as its parent compound of Cu 3 Se 2 with slight decrease in lattice spacings of (101) and (210) lattice planes (0.0222 Å and 0.0148 Å, respectively) evident from the powder X-ray diffraction pattern. (Co 0.21 Ni 0.25 Cu 0.54 ) 3 Se 2 thin film exhibited excellent OER catalytic activity and required an overpotential of 272 mV to reach a current density of 10 mA cm −2 , which is 54 mV lower than Cu 3 Se 2 , indicating a synergistic effect of transition metal doping in enhancing catalytic activity.more » « less
-
Water electrolysis can use renewable electricity to produce green hydrogen, a portable fuel and sustainable chemical precursor. Improving electrolyzer efficiency hinges on the activity of the oxygen evolution reaction (OER) catalyst. Earth-abundant, ABO3-type perovskite oxides offer great compositional, structural, and electronic tunability, with previous studies showing compositional substitution can increase the OER activity drastically. However, the relationship between the tailored bulk composition and that of the surface, where OER occurs, remains unclear. Here, we study the effects of electrochemical cycling on the OER activity of La 0.5 Sr 0.5 Ni 1-x Fe x O 3-δ (x = 0-0.5) epitaxial films grown by oxide molecular beam epitaxy as a model Sr-containing perovskite oxide. Electrochemical testing and surface-sensitive spectroscopic analyses show Ni segregation, which is affected by electrochemical history, along with surface amorphization, coupled with changes in OER activity. Our findings highlight the importance of surface composition and electrochemical cycling conditions in understanding OER performance on mixed metal oxide catalysts, suggesting common motifs of the active surface with high surface area systems.more » « less
An official website of the United States government
