skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 10, 2026

Title: Surface engineering of Pt nanocatalysts with transition metal oleates for selective catalysis: a case study on the hydrogenation of α,β-unsaturated aldehydes
The adsorption of transition metal oleates on Pt nanoparticle surfaces creates a negative charge, promoting selective hydrogenation of CO bonds over CC bonds in nonpolar solvents, ensuring reactant solubility and improving catalytic efficiency.  more » « less
Award ID(s):
2045662
PAR ID:
10659450
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
RSC
Date Published:
Journal Name:
Nanoscale
Volume:
17
Issue:
15
ISSN:
2040-3364
Page Range / eLocation ID:
9391 to 9400
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As appreciation for nonclassical hydrogen bonds has progressively increased, so have efforts to characterize these interesting interactions. Whereas several kinds of C−H hydrogen bonds have been well‐studied, much less is known about the R3N+−C−H⋅⋅⋅X variety. Herein, we present crystallographic and spectroscopic evidence for the existence of these interactions, with special relevance to Selectfluor chemistry. Of particular note is the propensity for Lewis bases to engage in nonclassical hydrogen bonding over halogen bonding with the electrophilic F atom of Selectfluor. Further, the first examples of1H NMR experiments detailing R3N+−C−H⋅⋅⋅X (X=O, N) hydrogen bonds are described. 
    more » « less
  2. Abstract Effective control on chemoselectivity in the catalytic hydrogenation of C=O over C=C bonds is uncommon with Pd‐based catalysts because of the favored adsorption of C=C bonds on Pd surface. Here we report a unique orthorhombic PdSn intermetallic phase with unprecedented chemoselectivity toward C=O hydrogenation. We observed the formation and metastability of this PdSn phase in situ. During a natural cooling process, the PdSn nanoparticles readily revert to the favored Pd3Sn2phase. Instead, using a thermal quenching method, we prepared a pure‐phase PdSn nanocatalyst. PdSn shows an >96 % selectivity toward hydrogenating C=O bonds of various α,β‐unsaturated aldehydes, highest in reported Pd‐based catalysts. Further study suggests that efficient quenching prevents the reversion from PdSn‐ to Pd3Sn2‐structured surface, the key to the desired catalytic performance. Density functional theory calculations and analysis of reaction kinetics provide an explanation for the observed high selectivity. 
    more » « less
  3. Abstract Heme is an active center in many proteins. Here we explore computationally the role of heme in protein folding and protein structure. We model heme proteins using a hybrid model employing the AWSEM Hamiltonian, a coarse-grained forcefield for the protein chain along with AMBER, an all-atom forcefield for the heme. We carefully designed transferable force fields that model the interactions between the protein and the heme. The types of protein–ligand interactions in the hybrid model include thioester covalent bonds, coordinated covalent bonds, hydrogen bonds, and electrostatics. We explore the influence of different types of hemes (heme b and heme c) on folding and structure prediction. Including both types of heme improves the quality of protein structure predictions. The free energy landscape shows that both types of heme can act as nucleation sites for protein folding and stabilize the protein folded state. In binding the heme, coordinated covalent bonds and thioester covalent bonds for heme c drive the heme toward the native pocket. The electrostatics also facilitates the search for the binding site. 
    more » « less
  4. Abstract Unraveling the complexity of the lipidome requires the development of novel approaches for the structural characterization of lipid species with isomer‐level discrimination. Herein, we introduce an online photochemical approach for lipid isomer identification through selective derivatization of double bonds by reaction with singlet oxygen. Lipid hydroperoxide products are generated promptly after laser irradiation. Fragmentation of these species in a mass spectrometer produces diagnostic fragments revealing the C=C locations in the unreacted lipids. This approach uses an inexpensive light source and photosensitizer making it easy to incorporate into any lipidomics workflow. We demonstrate the utility of this approach for the shotgun profiling of C=C locations in different lipid classes present in tissue extracts using electrospray ionization (ESI) and ambient imaging of lipid species differing only by the location of C=C bonds using nanospray desorption electrospray ionization (nano‐DESI). 
    more » « less
  5. Abstract The development of catalysts capable of fast, robust C−H bond amination under mild conditions is an unrealized goal despite substantial progress in the field of C−H activation in recent years. A Mn‐based metal–organic framework (CPF‐5) is described that promotes the direct amination of C−H bonds with exceptional activity. CPF‐5 is capable of functionalizing C−H bonds in an intermolecular fashion with unrivaled catalytic stability producing >105turnovers. 
    more » « less