Abstract The United States produces more than 10 million tons of waste oils and fats each year. This paper aims to establish a new biomanufacturing platform that converts waste oils or fats into a series of value‐added products. Our research employs the oleaginous yeastYarrowia lipolyticaas a case study for citric acid (CA) production from waste oils. First, we conducted the computational fluid dynamics (CFD) simulation of the bioreactor system and identified that the extracellular mixing and mass transfer is the first limiting factor of an oil fermentation process due to the insolubility of oil in water. Based on the CFD simulation results, the bioreactor design and operating conditions were optimized and successfully enhanced oil uptake and bioconversion in fed‐batch fermentation experiments. After that, we investigated the impacts of cell morphology on oil uptake, intracellular lipid accumulation, and CA formation by overexpressing and deleting theMHY1gene in the wild typeY. lipolyticaATCC20362. Fairly good linear correlations (R2 > 0.82) were achieved between cell morphology and productivities of biomass, lipid, and CA. Finally, fermentation kinetics with both glucose and oil substrates were compared and the oil fermentation process was carefully evaluated. Our study suggests that waste oils or fats can be economical feedstocks for biomanufacturing of many high‐value products.
more »
« less
This content will become publicly available on January 12, 2027
Enhancing Lipid Production in Yarrowia lipolytica Through Continuous Fermentation and Adaptive Laboratory Evolution in Bioreactors
Yarrowia lipolyticaexcels in microbial lipid production, thriving across diverse conditions. Batch or fed-batch fermentation is the not only common practice to achieve higher lipid titer and yield but it is also subject to lower lipid productivity. Single-stage continuous fermentation (CF) provides a great potential for significantly higher productivity, but genetic instability is often seen and challenges strain performance over the long-period CF. This study harnesses single-stage CF to not only improve lipid productivity but also evolve high-lipid mutants from a previously engineeredY. lipolyticastrain E26 via adaptive laboratory evolution (ALE) in a continuous bioreactor, guided by a predictive kinetic model. The single-stage CF was run for 1128 hours (47 days) with key process parameters adjusted in a 1-L bioreactor to produce over 150 g/L yeast biomass, exceeding the targeted 113 g/L that is predicted by the model. Compared with the fed-batch fermentation process, the single-stage CF successfully improved lipid productivity from 0.3–0.5 g/L/h to about 1 g/L/h while maintaining the lipid yield at around 0.1 g/g. The CF sample at 1008 hours was used to isolate mutants with higher lipid production after ALE in the continuous bioreactor. A mutant E26E03 was identified, which demonstrated improvements in biomass, lipid content, and lipid yield by 43%, 30%, and 51%, respectively, over the original strain E26 in fed-batch fermentation. Our study indicated that using model-guided CF with ALE in a continuous bioreactor provides a great potential for significantly higher product titer, rate, and yield in biomanufacturing.
more »
« less
- Award ID(s):
- 2133660
- PAR ID:
- 10659557
- Editor(s):
- Gross, Richard
- Publisher / Repository:
- Mary Ann Liebert (Sage Journals)
- Date Published:
- Journal Name:
- Industrial Biotechnology
- ISSN:
- 1550-9087
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
1-Decanol has great value in the pharmaceutical and fragrance industries and plays an important role in the chemical industry. In this study, we engineered Escherichia coli to selectively synthesize 1-decanol by using enzymes of the core reverse β-oxidation (rBOX) pathway and termination module with overlapping chain-length specificity. Through screening for acyl-CoA reductase termination enzymes and proper regulation of rBOX pathway expression, a 1-decanol titer of 1.4 g/L was achieved. Further improvements were realized by engineering pyruvate dissimilation to ensure the generation of NADH through pyruvate dehydrogenase (PDH) and reducing byproduct synthesis via a tailored YigI thioesterase knockout, increasing 1-decanol titer to 1.9 g/L. The engineered strain produced about 4.4 g/L 1-decanol with a yield of 0.21 g/g in 36 h in a bi-phasic fermentation that used a dodecane overlay to increase 1-decanol transport and reduce its toxicity. Adjustment of pathway expression (varying inducer concentration) and cell growth (oxygen availability) enabled 1-decanol production at 6.1 g/L (0.26 g/g yield) and 10.05 g/L (0.2 g/g yield) using rich medium in shake flasks and bioreactor, respectively. Remarkably, the use of minimal medium resulted in 1-decanol production with 100% specificity at 2.8 g/L (0.14 g/g yield) and a per cell mass yield higher than rich medium. These 1-decanol titers, yields and purity are at least 10-fold higher than others reported to date and the engineered strain shows great potential for industrial production. Taken together, our findings suggest that using rBOX pathway and termination enzymes of proper chain-length specificity in combination with optimal chassis engineering should be an effective approach for the selective production of alcohols.more » « less
-
ABSTRACT Chromosomal integration of heterologous metabolic pathways is optimal for industrially relevant fermentation, as plasmid-based fermentation causes extra metabolic burden and genetic instabilities. In this work, chromosomal integration was adapted for the production of mevalonate, which can be readily converted into β-methyl-δ-valerolactone, a monomer for the production of mechanically tunable polyesters. The mevalonate pathway, driven by a constitutive promoter, was integrated into the chromosome of Escherichia coli to replace the native fermentation gene adhE or ldhA . The engineered strains (CMEV-1 and CMEV-2) did not require inducer or antibiotic and showed slightly higher maximal productivities (0.38 to ∼0.43 g/liter/h) and yields (67.8 to ∼71.4% of the maximum theoretical yield) than those of the plasmid-based fermentation. Since the glycolysis pathway is the first module for mevalonate synthesis, atpFH deletion was employed to improve the glycolytic rate and the production rate of mevalonate. Shake flask fermentation results showed that the deletion of atpFH in CMEV-1 resulted in a 2.1-fold increase in the maximum productivity. Furthermore, enhancement of the downstream pathway by integrating two copies of the mevalonate pathway genes into the chromosome further improved the mevalonate yield. Finally, our fed-batch fermentation showed that, with deletion of the atpFH and sucA genes and integration of two copies of the mevalonate pathway genes into the chromosome, the engineered strain CMEV-7 exhibited both high maximal productivity (∼1.01 g/liter/h) and high yield (86.1% of the maximum theoretical yield, 30 g/liter mevalonate from 61 g/liter glucose after 48 h in a shake flask). IMPORTANCE Metabolic engineering has succeeded in producing various chemicals. However, few of these chemicals are commercially competitive with the conventional petroleum-derived materials. In this work, chromosomal integration of the heterologous pathway and subsequent optimization strategies ensure stable and efficient (i.e., high-titer, high-yield, and high-productivity) production of mevalonate, which demonstrates the potential for scale-up fermentation. Among the optimization strategies, we demonstrated that enhancement of the glycolytic flux significantly improved the productivity. This result provides an example of how to tune the carbon flux for the optimal production of exogenous chemicals.more » « less
-
Abstract Engineered cyanobacteriumSynechococcus elongatuscan use light and CO2to produce sucrose, making it a promising candidate for use in co-cultures with heterotrophic workhorses. However, this process is challenged by the mutual stresses generated from the multispecies microbial culture. Here we demonstrate an ecosystem whereS. elongatusis freely grown in a photo-bioreactor (PBR) containing an engineered heterotrophic workhorse (either β-carotene-producingYarrowia lipolytica or indigoidine-producingPseudomonas putida) encapsulated in calcium-alginate hydrogel beads. The encapsulation prevents growth interference, allowing the cyanobacterial culture to produce high sucrose concentrations enabling the production of indigoidine and β-carotene in the heterotroph. Our experimental PBRs yielded an indigoidine titer of 7.5 g/L hydrogel and a β-carotene titer of 1.3 g/L hydrogel, amounts 15–22-fold higher than in a comparable co-culture without encapsulation. Moreover,13C-metabolite analysis and protein overexpression tests indicated that the hydrogel beads provided a favorable microenvironment where the cell metabolism inside the hydrogel was comparable to that in a free culture. Finally, the heterotroph-containing hydrogels were easily harvested and dissolved by EDTA for product recovery, while the cyanobacterial culture itself could be reused for the next batch of immobilized heterotrophs. This co-cultivation and hydrogel encapsulation system is a successful demonstration of bioprocess optimization under photobioreactor conditions.more » « less
-
Fed-batch processes are commonly used in industry to obtain sufficient biomass and associated recombinant protein or plasmids. In research laboratories, it is more common to use batch cultures, as the setup of fed-batch processes can be challenging. This method outlines a robust and reliable means to generate Escherichia coli biomass in a minimum amount of fermentation time using a standardized fed-batch process. Final cell densities can reach over 50g dry cell weight per liter (g dcw/L) depending on the strain. This method uses a predefined exponential feeding strategy and conservative induction protocol to achieve these targets without multiple trial and error studies. If desired, productivity can be optimized by balancing the induction time and feed rates. This method utilizes cost-efficient defined media, minimizes process control complexity, and potentially aids downstream purification.more » « less
An official website of the United States government
