skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Resolving the effects of functional traits on tree growth rates: The influence of temporal dynamics and divergent strategies by leaf habit
Abstract Ensuring the sustainability of forest ecosystems requires understanding the mechanisms underlying tree growth and predicting their relative influence across taxa and environments.Functional ecology posits that variation in tree growth is related to individual differences in functional traits, which serve as proxies for resource acquisition and investment strategies. However, studies of trait–growth relationships have produced inconsistent results, likely due to unaccounted factors like interspecific interactions, ontogeny, differing leaf habit strategies, and variation in resource acquisition and allocation.We investigated the utility of key functional traits as predictors of tree height growth rates in common garden experiments in the absence of interspecific interactions. We posit that trait–growth relationships vary with age and between two groups relating to leaf habit: deciduous and evergreen species.Using data from 38 tree species planted in monoculture plots across seven sites of the International Diversity Experiment Network with Trees (IDENT) in North America and Europe, we compiled height growth rates over 9 years post‐germination. We modelled growth using a Bayesian hierarchical generalized linear model incorporating four above‐ground functional traits related to resource acquisition and investment: specific leaf area (SLA), wood density (WD), leaf dry matter content (LDMC) and seed mass (SM). Improvements in predictive power due to the variation of trait effects with age and leaf habit were evaluated via alternative hypothesis‐driven models, using the Expected Log Pointwise Predictive Density (ELPD) as a performance measure.Trait effects on growth varied with age and leaf habit, shifting between positive and negative effects, reflecting changes in resource acquisition and investment strategies. The relationships between traits and growth were strongest during the first three growing seasons for deciduous species and during the seventh to the ninth for evergreen species. Accounting for age and leaf habit substantially improved predictive power.Synthesis.Traits are not consistently associated with tree growth rates but instead reflect dynamic resource acquisition and investment strategies over time and between deciduous and evergreen species. Despite this variability, our findings confirm the utility of functional traits to predict tree growth rates, especially when trait effects are considered to vary with age and leaf habit.  more » « less
Award ID(s):
1831944 2425352
PAR ID:
10659618
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Ecology
Volume:
113
Issue:
11
ISSN:
0022-0477
Page Range / eLocation ID:
3191 to 3209
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The interspecific trade‐off between growth versus mortality rates of tree species is thought to be driven by functional biology and to contribute to species ecological niche differentiation. Yet, functional trait variation is often not strongly correlated with growth and mortality, and few studies have investigated the relationships of both traits and niches, specifically encompassing above and belowground resources, to the trade‐off itself. These relationships are particularly relevant for seedlings, which must often survive resource limitation to reach larger size classes.We investigated the functional basis of the interspecific growth–mortality trade‐off and its relationship with ecological niches for seedlings of 14 tree species in a tropical forest in southwest China.We found evidence for an interspecific growth–mortality trade‐off at the seedling stage using 15 functional traits and 15 ecological niche variables. None of the organ‐level traits correlated with growth, mortality, nor the trade‐off, whereas specific stem length (SSL), a biomass allocation trait, was the only trait to have a significant correlation (positive). Moreover, light‐defined niches were not correlated with growth, mortality or the trade‐off, but soil‐defined niches did. Species at the faster growth/higher mortality end of the trade‐off were associated with higher fertility defined by lower soil bulk density and slope, and higher soil organic matter concentration and soil total nitrogen.Our findings indicate the importance of stem elongation and soil fertility for growth, mortality and their trade‐off at the seedling stage in this Asian tropical forest. Our findings contrast with analogous studies in neotropical forests showing the importance of photosynthesis‐related leaf traits related to insolation. Therefore, the functional drivers of demographic rates and trade‐offs, as well as their consequences for ecological niches, can vary among forests, likely owing to differences in biogeography, canopy disturbance rates, topography and soil properties. Moreover, the effects of functional trait variation on demographic rates and trade‐offs may be better revealed when biomass allocation is accounted for in a whole‐plant context. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  2. Summary Plant cuticles protect the interior tissues from ambient hazards, including desiccation, UV light, physical wear, herbivores and pathogens. Consequently, cuticle properties are shaped by evolutionary selection.We compiled a global dataset of leaf cuticle thickness (CT) and accompanying leaf traits for 1212 species, mostly angiosperms, from 293 sites representing all vegetated continents. We developed and tested 11 hypotheses concerning ecological drivers of interspecific variation in CT.CT showed clear patterning according to latitude, biome, taxonomic family, site climate and other leaf traits. Species with thick leaves and/or high leaf mass per area tended to have thicker cuticles, as did evergreen relative to deciduous woody species, and species from sites that during the growing season were warmer, had fewer frost days and lower wind speeds, and occurred at lower latitudes. CT–environment relationships were notably stronger among nonwoody than woody species.Heavy investment in cuticle may be disadvantaged at sites with high winds and frequent frosts for ‘economic’ or biomechanical reasons, or because of reduced herbivore pressure. Alternatively, cuticles may become more heavily abraded under such conditions. Robust quantification of CT–trait–environment relationships provides new insights into the multiple roles of cuticles, with additional potential use in paleo‐ecological reconstruction. 
    more » « less
  3. Abstract Understanding the mechanisms that promote the coexistence of hundreds of species over small areas in tropical forest remains a challenge. Many tropical tree species are presumed to be functionally equivalent shade tolerant species but exist on a continuum of performance trade‐offs between survival in shade and the ability to quickly grow in sunlight. These trade‐offs can promote coexistence by reducing fitness differences.Variation in plant functional traits related to resource acquisition is thought to predict variation in performance among species, perhaps explaining community assembly across habitats with gradients in resource availability. Many studies have found low predictive power, however, when linking trait measurements to species demographic rates.Seedlings face different challenges recruiting on the forest floor and may exhibit different traits and/or performance trade‐offs than older individuals face in the eventual adult niche. Seed mass is the typical proxy for seedling success, but species also differ in cotyledon strategy (reserve vs. photosynthetic) or other leaf, stem and root traits. These can cause species with the same average seed mass to have divergent performance in the same habitat.We combined long‐term studies of seedling dynamics with functional trait data collected at a standard life‐history stage in three diverse neotropical forests to ask whether variation in coordinated suites of traits predicts variation among species in demographic performance.Across hundreds of species in Ecuador, Panama and Puerto Rico, we found seedlings displayed correlated suites of leaf, stem, and root traits, which strongly correlated with seed mass and cotyledon strategy. Variation among species in seedling functional traits, seed mass, and cotyledon strategy were strong predictors of trade‐offs in seedling growth and survival. These results underscore the importance of matching the ontogenetic stage of the trait measurement to the stage of demographic dynamics.Our findings highlight the importance of cotyledon strategy in addition to seed mass as a key component of seed and seedling biology in tropical forests because of the contribution of carbon reserves in storage cotyledons to reducing mortality rates and explaining the growth‐survival trade‐off among species.Synthesis: With strikingly consistent patterns across three tropical forests, we find strong evidence for the promise of functional traits to provide mechanistic links between seedling form and demographic performance. 
    more » « less
  4. Abstract Soil nutrients and water availability are strong drivers of tropical tree species distribution across scales. However, the physiological mechanisms underlying environmental filtering along these gradients remain incompletely understood. Previous studies mostly focused on univariate variation in structural traits, but a more integrative approach combining multiple physiological traits is needed to fully portray species functional strategies.We measured nine leaf functional traits related to trees' resource capture and hydraulic strategies for 552 individuals belonging to 21 tropical tree species across an environmental gradient in Amazonian forests. Our sampling included generalist and specialist species fromterra firme(TF) and seasonally flooded (SF) forests. We tested the influence of the topographic wetness index, a proxy for soil moisture and nutrient gradients, on each trait separately and on the trait integration through multivariate indices computed from the eigenvalues of a principal component analysis on the traits of the species. Finally, we evaluated intraspecific trait variability (ITV) for generalists and specialists by calculating the coefficient of variation for each trait.Results showed that (1) the environment had a greater influence on trait syndromes than single trait variation. Moreover, (2) SF specialist species expressed a stronger leaf trait coordination than TF specialist species. Furthermore, (3) the ability of generalist species to occupy a broader range of environments was not reflected by a larger ITV than specialist species but by the capacity to change trait coordination across environments.Our work highlights the need to investigate functional strategies as multidimensional syndromes in physiological trait space to fully understand and predict species distribution along environmental gradients. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  5. Abstract Ectomycorrhizal (EM) effects on forest ecosystem carbon (C) and nitrogen (N) cycling are highly variable, which may be due to underappreciated functional differences among EM‐associating trees. We hypothesise that differences in functional traits among EM tree genera will correspond to differences in soil organic matter (SOM) dynamics.We explored how differences among three genera of angiosperm EM trees (Quercus,Carya, andTilia) in functional traits associated with leaf litter quality, resource use and allocation patterns, and microbiome assembly related to overall soil biogeochemical properties.We found consistent differences among EM tree genera in functional traits.Quercustrees had lower litter quality, lower δ13C in SOM, higher δ15N in leaf tissues, greater oxidative extracellular enzyme activities, and higher EM fungal diversity thanTiliatrees, whileCaryatrees were often intermediary. These functional traits corresponded to overall SOM‐C and N dynamics and soil fungal and bacterial community composition.Our findings suggest that trait variation among EM‐associating tree species should be an important consideration in assessing plant–soil relationships such that EM trees cannot be categorised as a unified functional guild. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less