Abstract Urban areas are increasingly vulnerable to the impacts of climate change, necessitating accurate simulations of urban climates in Earth system models (ESMs) in support of large‐scale urban climate adaptation efforts. ESMs underrepresent urban areas due to their small spatial extent and the lack of detailed urban landscape data. To enhance the accuracy of urban representation, this study integrated the local climate zones (LCZs) scheme within the Community Earth System Model (CESM) to better represent urban heterogeneity. We adopted a modular approach to incorporate the 10 built LCZ classes into CESM as a new option in addition to the default urban three‐class scheme (i.e., tall building district, high density, and medium density). CESM simulations using the LCZ‐based urban characteristics were validated globally at 20 flux tower sites, showing site‐averaged improvement in modeling upward longwave radiation () and anthropogenic heat flux (), but increased uncertainties in modeling sensible heat flux (). The root‐mean‐square error between the observed and simulated using the LCZ decreased by 4% compared to using the default. Model sensitivity experiments revealed that and had comparable sensitivity to LCZ urban morphological and thermal parameter subsets. This study assessed and demonstrated the implementation as the starting point for future work on better resolving urban areas in Earth system modeling.
more »
« less
U-Surf: a global 1 km spatially continuous urban surface property dataset for kilometer-scale urban-resolving Earth system modeling
Abstract. High-resolution urban climate modeling has faced substantial challenges due to the absence of a globally consistent, spatially continuous, and accurate dataset to represent the spatial heterogeneity of urban surfaces and their biophysical properties. This deficiency has long obstructed the development of urban-resolving Earth system models (ESMs) and ultra-high-resolution urban climate modeling, over large domains. Here, we present U-Surf, a first-of-its-kind 1 km resolution present-day (circa 2020) global continuous urban surface parameter dataset. Using the urban canopy model (UCM) in the Community Earth System Model as a base model for satisfying dataset requirements, U-Surf leverages the latest advances in remote sensing, machine learning, and cloud computing to provide the most relevant urban surface biophysical parameters, including radiative, morphological, and thermal properties, for UCMs at the facet and canopy level. Generated using a systematically unified workflow, U-Surf ensures internal consistency among key parameters, making it the first globally coherent urban canopy surface dataset. U-Surf significantly improves the representation of the urban land heterogeneity both within and across cities globally; provides essential, high-fidelity surface biophysical constraints to urban-resolving ESMs; enables detailed city-to-city comparisons across the globe; and supports next-generation kilometer-resolution Earth system modeling across scales. U-Surf parameters can be easily converted or adapted to various types of UCMs, such as those embedded in weather and regional climate models, as well as air quality models. The fundamental urban surface constraints provided by U-Surf can also be used as features for machine learning models and can have other broad-scale applications for socioeconomic, public health, and urban planning contexts. We expect U-Surf to advance the research frontier of urban system science, climate-sensitive urban design, and coupled human–Earth systems in the future. The dataset is publicly available at https://doi.org/10.5281/zenodo.11247598 (Cheng et al., 2024).
more »
« less
- Award ID(s):
- 2145362
- PAR ID:
- 10659672
- Publisher / Repository:
- Copernicus Publications
- Date Published:
- Journal Name:
- Earth System Science Data
- Volume:
- 17
- Issue:
- 5
- ISSN:
- 1866-3516
- Page Range / eLocation ID:
- 2147 to 2174
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The accurate modeling of urban microclimate is a challenging task given the high surface heterogeneity of urban land cover and the vertical structure of street morphology. Recent years have witnessed significant efforts in numerical modeling and data collection of the urban environment. Nonetheless, it is difficult for the physical‐based models to fully utilize the high‐resolution data under the constraints of computing resources. The advancement in machine learning (ML) techniques offers the computational strength to handle the massive volume of data. In this study, we proposed a modeling framework that uses ML approach to estimate point‐scale street‐level air temperature from the urban‐resolving meso‐scale climate model and a suite of hyper‐resolution urban geospatial data sets, including three‐dimensional urban morphology, parcel‐level land use inventory, and weather observations from a sensor network. We implemented this approach in the City of Chicago as a case study to demonstrate the capability of the framework. The proposed approach vastly improves the resolution of temperature predictions in cities, which will help the city with walkability, drivability, and heat‐related behavioral studies. Moreover, we tested the model's reliability on out‐of‐sample locations to investigate the modeling uncertainties and the application potentials to the other areas. This study aims to gain insights into next‐gen urban climate modeling and guide the observation efforts in cities to build the strength for the holistic understanding of urban microclimate dynamics.more » « less
-
Abstract Increasing the albedo of urban surfaces, through strategies like white roof installations, has emerged as a promising approach for urban climate adaptation. Yet, modeling these strategies on a large scale is limited by the use of static urban surface albedo representations in the Earth system models. In this study, we developed a new transient urban surface albedo scheme in the Community Earth System Model and evaluated evolving adaptation strategies under varying urban surface albedo configurations. Our simulations model a gradual increase in the urban surface albedo of roofs, impervious roads, and walls from 2015 to 2099 under the SSP3‐7.0 scenario. Results highlight the cooling effects of roof albedo modifications, which reduce the annual‐mean canopy urban heat island intensity from 0.8°C in 2015 to 0.2°C by 2099. Compared to high‐density and medium‐density urban areas, higher albedo configurations are more effective in cooling environments within tall building districts. Additionally, urban surface albedo changes lead to changes in building energy consumption, where high albedo results in more indoor heating usage in urban areas located beyond 30°N and 25°S. This scheme offers potential applications like simulating natural albedo variations across urban surfaces and enables the inclusion of other urban parameters, such as surface emissivity.more » « less
-
The WUDAPT (World Urban Database and Access Portal Tools project goal is to capture consistent information on urban form and function for cities worldwide that can support urban weather, climate, hydrology and air quality modeling. These data are provided as urban canopy parameters (UCPs) as used by weather, climate and air quality models to simulate the effects of urban surfaces on the overlying atmosphere. Information is stored with different levels of detail (LOD). With higher LOD greater spatial precision is provided. At the lowest LOD, Local Climate Zones (LCZ) with nominal UCP ranges is provided (order 100 m or more). To describe the spatial heterogeneity present in cities with great specificity at different urban scales we introduce the Digital Synthetic City (DSC) tool to generate UCPs at any desired scale meeting the fit-for-purpose goal of WUDAPT. 3D building and road elements of entire city landscapes are simulated based on readily available data. Comparisons with real-world urban data are very encouraging. It is customized (C-DSC) to incorporate each city's unique building morphologies based on unique types, variations and spatial distribution of building typologies, architecture features, construction materials and distribution of green and pervious surfaces. The C-DSC uses crowdsourcing methods and sampling within city Testbeds from around the world. UCP data can be computed from synthetic images at selected grid sizes and stored such that the coded string provides UCP values for individual grid cells.more » « less
-
Abstract The vertical dimensions of urban morphology, specifically the heights of trees and buildings, exert significant influence on wind flow fields in urban street canyons and the thermal environment of the urban fabric, subsequently affecting the microclimate, noise levels, and air quality. Despite their importance, these critical attributes are less commonly available and rarely utilized in urban climate models compared to planar land use and land cover data. In this study, we explicitly mapped theheight oftreesandbuildings (HiTAB) across the city of Chicago at 1 m spatial resolution using a data fusion approach. This approach integrates high-precision light detection and ranging (LiDAR) cloud point data, building footprint inventory, and multi-band satellite images. Specifically, the digital terrain and surface models were first created from the LiDAR dataset to calculate the height of surface objects, while the rest of the datasets were used to delineate trees and buildings. We validated the derived height information against the existing building database in downtown Chicago and the Meter-scale Urban Land Cover map from the Environmental Protection Agency, respectively. The co-investigation on trees and building heights offers a valuable initiative in the effort to inform urban land surface parameterizations using real-world data. Given their high spatial resolution, the height maps can be adopted in physical-based and data-driven urban models to achieve higher resolution and accuracy while lowering uncertainties. Moreover, our method can be extended to other urban regions, benefiting from the growing availability of high-resolution urban informatics globally. Collectively, these datasets can substantially contribute to future studies on hyper-local weather dynamics, urban heterogeneity, morphology, and planning, providing a more comprehensive understanding of urban environments.more » « less
An official website of the United States government

