skip to main content


Title: Detailed height mapping of trees and buildings (HiTAB) in Chicago and its implications to urban climate studies
Abstract

The vertical dimensions of urban morphology, specifically the heights of trees and buildings, exert significant influence on wind flow fields in urban street canyons and the thermal environment of the urban fabric, subsequently affecting the microclimate, noise levels, and air quality. Despite their importance, these critical attributes are less commonly available and rarely utilized in urban climate models compared to planar land use and land cover data. In this study, we explicitly mapped theheight oftreesandbuildings (HiTAB) across the city of Chicago at 1 m spatial resolution using a data fusion approach. This approach integrates high-precision light detection and ranging (LiDAR) cloud point data, building footprint inventory, and multi-band satellite images. Specifically, the digital terrain and surface models were first created from the LiDAR dataset to calculate the height of surface objects, while the rest of the datasets were used to delineate trees and buildings. We validated the derived height information against the existing building database in downtown Chicago and the Meter-scale Urban Land Cover map from the Environmental Protection Agency, respectively. The co-investigation on trees and building heights offers a valuable initiative in the effort to inform urban land surface parameterizations using real-world data. Given their high spatial resolution, the height maps can be adopted in physical-based and data-driven urban models to achieve higher resolution and accuracy while lowering uncertainties. Moreover, our method can be extended to other urban regions, benefiting from the growing availability of high-resolution urban informatics globally. Collectively, these datasets can substantially contribute to future studies on hyper-local weather dynamics, urban heterogeneity, morphology, and planning, providing a more comprehensive understanding of urban environments.

 
more » « less
Award ID(s):
2330565 2230772 2139316
NSF-PAR ID:
10531310
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
19
Issue:
9
ISSN:
1748-9326
Format(s):
Medium: X Size: Article No. 094013
Size(s):
Article No. 094013
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Amplified rates of urban convective systems pose a severe peril to the life and property of the inhabitants over urban regions, requiring a reliable urban weather forecasting system. However, the city scale's accurate rainfall forecast has constantly been a challenge, as they are significantly affected by land use/ land cover changes (LULCC). Therefore, an attempt has been made to improve the forecast of the severe convective event by employing the comprehensive urban LULC map using Local Climate Zone (LCZ) classification from the World Urban Database and Access Portal Tools (WUDAPT) over the tropical city of Bhubaneswar in the eastern coast of India. These LCZs denote specific land cover classes based on urban morphology characteristics. It can be used in the Advanced Research version of the Weather Research and Forecasting (ARW) model, which also encapsulates the Building Effect Parameterization (BEP) scheme. The BEP scheme considers the buildings' 3D structure and allows complex land–atmosphere interaction for an urban area. The temple city Bhubaneswar, the capital of eastern state Odisha, possesses significant rapid urbanization during the recent decade. The LCZs are generated at 500 m grids using supervised classification and are ingested into the ARW model. Two different LULC dataset, i.e., Moderate Resolution Imaging Spectroradiometer (MODIS) and WUDAPT derived LCZs and initial, and boundary conditions from NCEP GFS 6-h interval are used for two pre-monsoon severe convective events of the year 2016. The results from WUDAPT based LCZ have shown an improvement in spatial variability and reduction in overall BIAS over MODIS LULC experiments. The WUDAPT based LCZ map enhances high-resolution forecast from ARW by incorporating the details of building height, terrain roughness, and urban fraction. 
    more » « less
  2. Abstract

    The accurate modeling of urban microclimate is a challenging task given the high surface heterogeneity of urban land cover and the vertical structure of street morphology. Recent years have witnessed significant efforts in numerical modeling and data collection of the urban environment. Nonetheless, it is difficult for the physical‐based models to fully utilize the high‐resolution data under the constraints of computing resources. The advancement in machine learning (ML) techniques offers the computational strength to handle the massive volume of data. In this study, we proposed a modeling framework that uses ML approach to estimate point‐scale street‐level air temperature from the urban‐resolving meso‐scale climate model and a suite of hyper‐resolution urban geospatial data sets, including three‐dimensional urban morphology, parcel‐level land use inventory, and weather observations from a sensor network. We implemented this approach in the City of Chicago as a case study to demonstrate the capability of the framework. The proposed approach vastly improves the resolution of temperature predictions in cities, which will help the city with walkability, drivability, and heat‐related behavioral studies. Moreover, we tested the model's reliability on out‐of‐sample locations to investigate the modeling uncertainties and the application potentials to the other areas. This study aims to gain insights into next‐gen urban climate modeling and guide the observation efforts in cities to build the strength for the holistic understanding of urban microclimate dynamics.

     
    more » « less
  3. The quantification of impervious surface through remote sensing provides critical information for urban planning and environmental management. The acquisition of quality reference data and the selection of effective predictor variables are two factors that contribute to the low accuracies of impervious surface in urban remote sensing. A hybrid method was developed to improve the extraction of impervious surface from high-resolution aerial imagery. This method integrates ancillary datasets from OpenStreetMap, National Wetland Inventory, and National Cropland Data to generate training and validation samples in a semi-automatic manner, significantly reducing the effort of visual interpretation and manual labeling. Satellite-derived surface reflectance stability is incorporated to improve the separation of impervious surface from other land cover classes. This method was applied to 1-m National Agriculture Imagery Program (NAIP) imagery of three sites with different levels of land development and data availability. Results indicate improved extractions of impervious surface with user’s accuracies ranging from 69% to 90% and producer’s accuracies from 88% to 95%. The results were compared to the 30-m percent impervious surface data of the National Land Cover Database, demonstrating the potential of this method to validate and complement satellite-derived medium-resolution datasets of urban land cover and land use. 
    more » « less
  4. Abstract The Local Climate Zone (LCZ) classification is already widely used in urban heat island and other climate studies. The current classification method does not incorporate crucial urban auxiliary GIS data on building height and imperviousness that could significantly improve urban-type LCZ classification utility as well as accuracy. This study utilized a hybrid GIS- and remote sensing imagery-based framework to systematically compare and evaluate different machine and deep learning methods. The Convolution Neural Network (CNN) classifier outperforms in terms of accuracy, but it requires multi-pixel input, which reduces the output’s spatial resolution and creates a tradeoff between accuracy and spatial resolution. The Random Forest (RF) classifier performs best among the single-pixel classifiers. This study also shows that incorporating building height dataset improves the accuracy of the high- and mid-rise classes in the RF classifiers, whereas an imperviousness dataset improves the low-rise classes. The single-pass forward permutation test reveals that both auxiliary datasets dominate the classification accuracy in the RF classifier, while near-infrared and thermal infrared are the dominating features in the CNN classifier. These findings show that the conventional LCZ classification framework used in the World Urban Database and Access Portal Tools (WUDAPT) can be improved by adopting building height and imperviousness information. This framework can be easily applied to different cities to generate LCZ maps for urban models. 
    more » « less
  5. Abstract

    Forecasting rates of forest succession at landscape scales will aid global efforts to restore tree cover to millions of hectares of degraded land. While optical satellite remote sensing can detect regional land cover change, quantifying forest structural change is challenging. We developed a state‐space modeling framework that applies Landsat satellite data to estimate variability in rates of natural regeneration between sites in a tropical landscape. Our models work by disentangling measurement error in Landsat‐derived spectral reflectance from process error related to successional variability. We applied our modeling framework to rank rates of forest succession between 10 naturally regenerating sites in Southwestern Panama from about 2001 to 2015 and tested how different models for measurement error impacted forecast accuracy, ecological inference, and rankings of successional rates between sites. We achieved the greatest increase in forecasting accuracy by adding intra‐annual phenological variation to a model based on Landsat‐derived normalized difference vegetation index (NDVI). The best‐performing model accounted for inter‐ and intra‐annual noise in spectral reflectance and translated NDVI to canopy height via Landsat–lidar fusion. Modeling forest succession as a function of canopy height rather than NDVI also resulted in more realistic estimates of forest state during early succession, including greater confidence in rank order of successional rates between sites. These results establish the viability of state‐space models to quantify ecological dynamics from time series of space‐borne imagery. State‐space models also provide a statistical approach well‐suited to fusing high‐resolution data, such as airborne lidar, with lower‐resolution data that provides better temporal and spatial coverage, such as the Landsat satellite record. Monitoring forest succession using satellite imagery could play a key role in achieving global restoration targets, including identifying sites that will regain tree cover with minimal intervention.

     
    more » « less