Many cities are experiencing more frequent extreme heat during hot summers. With the rise of global temperature, the thermal comfort in urban areas become even worse. Quantitative information of the spatial distributions of urban heat has become increasingly important for resilience and adaptation to climate change in cities. This study compares satellite-derived land surface temperature (LST) and urban microclimate modeling-based mean radiant temperature (Tmrt) for mapping the urban heat distributions in Philadelphia, Pennsylvania, USA. The LST was estimated based on Landsat 8 thermal imagery with a spatial resolution of around 100 m, while the Tmrt was simulated based on high resolution LiDAR and national aerial imagery program multispectral aerial imageries with a spatial resolution of 1 m. Result shows that both LST and Tmrt show a similar general pattern of the urban heat across the study area, while the Tmrt presents much more details of the heat variations street by street and neighborhood by neighborhood. The LST tends to have a stronger relationship with the Tmrt on building roofs, which are usually not the place for human activities. This studyprovides evidence for choosing more appropriate metrics in urban heat-related studies.
more »
« less
Hyper‐Local Temperature Prediction Using Detailed Urban Climate Informatics
Abstract The accurate modeling of urban microclimate is a challenging task given the high surface heterogeneity of urban land cover and the vertical structure of street morphology. Recent years have witnessed significant efforts in numerical modeling and data collection of the urban environment. Nonetheless, it is difficult for the physical‐based models to fully utilize the high‐resolution data under the constraints of computing resources. The advancement in machine learning (ML) techniques offers the computational strength to handle the massive volume of data. In this study, we proposed a modeling framework that uses ML approach to estimate point‐scale street‐level air temperature from the urban‐resolving meso‐scale climate model and a suite of hyper‐resolution urban geospatial data sets, including three‐dimensional urban morphology, parcel‐level land use inventory, and weather observations from a sensor network. We implemented this approach in the City of Chicago as a case study to demonstrate the capability of the framework. The proposed approach vastly improves the resolution of temperature predictions in cities, which will help the city with walkability, drivability, and heat‐related behavioral studies. Moreover, we tested the model's reliability on out‐of‐sample locations to investigate the modeling uncertainties and the application potentials to the other areas. This study aims to gain insights into next‐gen urban climate modeling and guide the observation efforts in cities to build the strength for the holistic understanding of urban microclimate dynamics.
more »
« less
- PAR ID:
- 10547436
- Publisher / Repository:
- Journal of Advances in Modeling Earth Systems
- Date Published:
- Journal Name:
- Journal of Advances in Modeling Earth Systems
- Volume:
- 16
- Issue:
- 3
- ISSN:
- 1942-2466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The vertical dimensions of urban morphology, specifically the heights of trees and buildings, exert significant influence on wind flow fields in urban street canyons and the thermal environment of the urban fabric, subsequently affecting the microclimate, noise levels, and air quality. Despite their importance, these critical attributes are less commonly available and rarely utilized in urban climate models compared to planar land use and land cover data. In this study, we explicitly mapped theheight oftreesandbuildings (HiTAB) across the city of Chicago at 1 m spatial resolution using a data fusion approach. This approach integrates high-precision light detection and ranging (LiDAR) cloud point data, building footprint inventory, and multi-band satellite images. Specifically, the digital terrain and surface models were first created from the LiDAR dataset to calculate the height of surface objects, while the rest of the datasets were used to delineate trees and buildings. We validated the derived height information against the existing building database in downtown Chicago and the Meter-scale Urban Land Cover map from the Environmental Protection Agency, respectively. The co-investigation on trees and building heights offers a valuable initiative in the effort to inform urban land surface parameterizations using real-world data. Given their high spatial resolution, the height maps can be adopted in physical-based and data-driven urban models to achieve higher resolution and accuracy while lowering uncertainties. Moreover, our method can be extended to other urban regions, benefiting from the growing availability of high-resolution urban informatics globally. Collectively, these datasets can substantially contribute to future studies on hyper-local weather dynamics, urban heterogeneity, morphology, and planning, providing a more comprehensive understanding of urban environments.more » « less
-
Morphological (e.g. shape, size, and height) and function (e.g. working, living, and shopping) information of buildings is highly needed for urban planning and management as well as other applications such as city-scale building energy use modeling. Due to the limited availability of socio-economic geospatial data, it is more challenging to map building functions than building morphological information, especially over large areas. In this study, we proposed an integrated framework to map building functions in 50 U.S. cities by integrating multi-source web-based geospatial data. First, a web crawler was developed to extract Points of Interest (POIs) from Tripadvisor.com, and a map crawler was developed to extract POIs and land use parcels from Google Maps. Second, an unsupervised machine learning algorithm named OneClassSVM was used to identify residential buildings based on landscape features derived from Microsoft building footprints. Third, the type ratio of POIs and the area ratio of land use parcels were used to identify six non-residential functions (i.e. hospital, hotel, school, shop, restaurant, and office). The accuracy assessment indicates that the proposed framework performed well, with an average overall accuracy of 94% and a kappa coefficient of 0.63. With the worldwide coverage of Google Maps and Tripadvisor.com, the proposed framework is transferable to other cities over the world. The data products generated from this study are of great use for quantitative city-scale urban studies, such as building energy use modeling at the single building level over large areas.more » « less
-
High-quality temperature data at a finer spatio-temporal scale is critical for analyzing the risk of heat exposure and hazards in urban environments. The variability of urban landscapes makes cities a challenging environment for quantifying heat exposure. Most of the existing heat hazard studies have inherent limitations on two fronts; first, the spatio-temporal granularities are too coarse, and second, the inability to track the ambient air temperature (AAT) instead of land surface temperature (LST). Overcoming these limitations requires developing models for mapping the variability in heat exposure in urban environments. We investigated an integrated approach for mapping urban heat hazards by harnessing a diverse set of high-resolution measurements, including both ground-based and satellite-based temperature data. We mounted vehicle-borne mobile sensors on city buses to collect high-frequency temperature data throughout 2018 and 2019. Our research also incorporated key biophysical parameters and Landsat 8 LST data into Random Forest regression modeling to map the hyperlocal variability of heat hazard over areas not covered by the buses. The vehicle-borne temperature sensor data showed large temperature differences within the city, with the largest variations of up to 10 °C and morning-afternoon diurnal changes at a magnitude around 20 °C. Random Forest modeling on noontime (11:30 am – 12:30 pm) data to predict AAT produced accurate results with a mean absolute error of 0.29 °C and successfully showcased the enhanced granularity in urban heat hazard mapping. These maps revealed well-defined hyperlocal variabilities in AAT, which were not evident with other research approaches. Urban core and dense residential areas revealed larger than 5 °C AAT differences from their nearby green spaces. The sensing framework developed in this study can be easily implemented in other urban areas, and findings from this study will be beneficial in understanding the heat vulnerabilities of individual communities. It can be used by the local government to devise targeted hazard mitigation efforts such as increasing green space, developing better heatsafety policies, and exposure warning for workers.more » « less
-
In this study, we investigate the compatibility of specific vulnerability indicators and heat exposure data and the suitability of spatial temperature-related data at a range of resolutions, to represent spatial temperature variations within cities using data from Atlanta, Georgia. For this purpose, we include various types of known and theoretically based vulnerability indicators such as specific street-level landscape features and urban form metrics, population-based and zone-based variables as predictors, and different measures of temperature, including air temperature (as vector-based data), land surface temperature (at resolution ranges from 30 m to 305 m), and mean radiant temperature (at resolution ranges from 1 m to 39 m) as dependent variables. Using regression analysis, we examine how different sets of predictors and spatial resolutions can explain spatial heat variation. Our findings suggest that the lower resolution of land surface temperature data, up to 152 m, and mean radiant temperature data, up to 15 m, may still satisfactorily represent spatial urban temperature variation caused by landscape elements. The results of this study have important implications for heat-related policies and planning by providing insights into the appropriate sets of data and relevant resolution of temperature measurements for representing spatial urban heat variations.more » « less