skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthetic Motifs for Understanding Lewis Acid Interactions with Persulfides and Thioselenides
Abstract Persulfides (RSS) and thioselenides (RSSe) play important roles in biological S and Se transfer reactions, and their interactions with Lewis acidic moieties exert control over reactivity. Here, we report the synthesis and reactivity of mononuclear Zn2+persulfide and thioselenide complexes from a unified synthetic strategy of using isolable dichalcogenide precursors. Highlighting the benefits of replacing S with Se, we use77Se NMR spectroscopy to reveal the effects of Lewis acid coordination (K+, Na+, Zn2+) on the electronic environment of the terminal Se of the thioselenide (R–Sβ–Seα). Coordination of RSSeto Zn2+polarizes the Se─S bond, rendering the internal sulfur atom (R–Sβ–Seα) susceptible to nucleophilic attack and resulting in selenide (Se2–) release. We also prepared a mononuclear Zn2+persulfide complex and probed differences in persulfide nucleophilicity when compared to the parent thiolate. Alkylation of the Zn2+persulfide is considerably faster than the Zn2+thiolate, supporting the proposed nucleophilicity enhancement of persulfides due to the α‐effect, and providing new insights into persulfide reactivity when coordinated to metals. Taken together, these investigations highlight the utility of small molecule synthetic models in advancing insights into the biological chemistry of metal dichaclogenides.  more » « less
Award ID(s):
2004150
PAR ID:
10659891
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
65
Issue:
3
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The activation of O 2 at thiolate–ligated iron( ii ) sites is essential to the function of numerous metalloenzymes and synthetic catalysts. Iron–thiolate bonds in the active sites of nonheme iron enzymes arise from either coordination of an endogenous cysteinate residue or binding of a deprotonated thiol-containing substrate. Examples of the latter include sulfoxide synthases, such as EgtB and OvoA, that utilize O 2 to catalyze tandem S–C bond formation and S -oxygenation steps in thiohistidine biosyntheses. We recently reported the preparation of two mononuclear nonheme iron–thiolate complexes (1 and 2) that serve as structural active-site models of substrate-bound EgtB and OvoA ( Dalton Trans. 2020, 49 , 17745–17757). These models feature monodentate thiolate ligands and tripodal N 4 ligands with mixed pyridyl/imidazolyl donors. Here, we describe the reactivity of 1 and 2 with O 2 at low temperatures to give metastable intermediates (3 and 4, respectively). Characterization with multiple spectroscopic techniques (UV-vis absorption, NMR, variable-field and -temperature Mössbauer, and resonance Raman) revealed that these intermediates are thiolate-ligated iron( iii ) dimers with a bridging oxo ligand derived from the four-electron reduction of O 2 . Structural models of 3 and 4 consistent with the experimental data were generated via density functional theory (DFT) calculations. The combined experimental and computational results illuminate the geometric and electronic origins of the unique spectral features of diiron( iii )-μ-oxo complexes with thiolate ligands, and the spectroscopic signatures of 3 and 4 are compared to those of closely-related diiron( iii )-μ-peroxo species. Collectively, these results will assist in the identification of intermediates that appear on the O 2 reaction landscapes of iron–thiolate species in both biological and synthetic environments. 
    more » « less
  2. Metallothioneins (MTs) are a ubiquitous class of small metal-binding proteins involved in metal homeostasis and detoxification. While known for their high affinity for d 10 metal ions, there is a surprising dearth of thermodynamic data on metals binding to MTs. In this study, Zn 2+ and Cu + binding to mammalian metallothionein-3 (MT-3) were quantified at pH 7.4 by isothermal titration calorimetry (ITC). Zn 2+ binding was measured by chelation titrations of Zn 7 MT-3, while Cu + binding was measured by Zn 2+ displacement from Zn 7 MT-3 with competition from glutathione (GSH). Titrations in multiple buffers enabled a detailed analysis that yielded condition-independent values for the association constant ( K ) and the change in enthalpy (Δ H ) and entropy (Δ S ) for these metal ions binding to MT-3. Zn 2+ was also chelated from the individual α and β domains of MT-3 to quantify the thermodynamics of inter-domain interactions in metal binding. Comparative titrations of Zn 7 MT-2 with Cu + revealed that both MT isoforms have similar Cu + affinities and binding thermodynamics, indicating that Δ H and Δ S are determined primarily by the conserved Cys residues. Inductively coupled plasma mass spectrometry (ICP-MS) analysis and low temperature luminescence measurements of Cu-replete samples showed that both proteins form two Cu 4 + –thiolate clusters when Cu + displaces Zn 2+ under physiological conditions. Comparison of the Zn 2+ and Cu + binding thermodynamics reveal that enthalpically-favoured Cu + , which forms Cu 4 + –thiolate clusters, displaces the entropically-favoured Zn 2+ . These results provide a detailed thermodynamic analysis of d 10 metal binding to these thiolate-rich proteins and quantitative support for, as well as molecular insight into, the role that MT-3 plays in the neuronal chemistry of copper. 
    more » « less
  3. Abstract Hydrogen sulfide (H2S) and nitric oxide (NO) are important gaseous biological signaling molecules that are involved in complex cellular pathways. A number of physiological processes require both H2S and NO, which has led to the proposal that different H2S/NO⋅ crosstalk species, including thionitrite (SNO) and perthionitrite (SSNO), are responsible for this observed codependence. Despite the importance of these S/N hybrid species, the reported properties and characterization, as well as the fundamental pathways of formation and subsequent reactivity, remain poorly understood. Herein we report new experimental insights into the fundamental reaction chemistry of pathways to form SNOand SSNO, including mechanisms for proton‐mediated interconversion. In addition, we demonstrate new modes of reactivity with other sulfur‐containing potential crosstalk species, including carbonyl sulfide (COS). 
    more » « less
  4. A synthetic method for the efficient construction of β-hydroxylactones and lactams bearing α-quaternary carbon centers is described. This transformation relies on an electronically differentiated Lewis base catalyst, which is uniquely capable of promoting a reductive aldol reaction of α,α-disubstituted and α,α,β-trisubstituted enones. This approach provides a valuable synthetic alternative for carbon–carbon bond formation in complex molecular settings due to its orthogonal reactivity compared to that of traditional aldol reactions. Based on this method described herein, lactones, lactams, and morpholine amides bearing α-quaternary carbon centers are accessible in yields up to 85% and 50:1 dr. 
    more » « less
  5. Abstract Lithium‐rich transition metal chalcogenides are witnessing a revival as candidates for Li‐ion cathode materials, spurred by the boost in their capacities from transcending conventional redox processes based on cationic states and tapping into additional chalcogenide states. A particularly striking case is Li2TiS3‐ySey, which features a d0metal. While the end members are expectedly inactive, substantial capacities are measured when both Se and S are present. Using X‐ray absorption spectroscopy, it is shown that the electronic structure of Li2TiS3‐ySeyis not a simple combination of the end members. The data confirm previous hypotheses that, in Li2TiS2.4Se0.6, this behavior is underpinned by concurrent and reversible redox of only S and Se, and identify key electronic states. Moreover, wavelet transforms of the extended X‐ray absorption fine structure provide direct evidence of the formation of short Se–Se units upon charging. The study uncovers the underpinnings of this intriguing reactivity and highlights the richness of redox chemistry in complex solids. 
    more » « less