skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 14, 2026

Title: Improving Spectrum Sharing in 6GHz with Spectrum Consumption Models
In 2020, the Federal Communication Commission (FCC) adopted rules to expand unlicensed operations in the 6 GHz band, opening up access to 1200MHz of spectrum to be shared by heterogeneous public and private network operators. This spectrum is anticipated to significantly expand access to much-needed mid-band spectrum for mobile and fixed broadband wireless uses. To manage the co-existence of these unlicensed users with legacy systems such as commercial microwave point-to-point links, the FCC’s rules provide for a mix of interference mitigation strategies, including geo-location (geo-fencing) to restrict unlicensed users in certain locations, different power limits for indoor and outdoor operations, and coordination of spectrum use via Automated Frequency Coordination (AFC) systems. Akin to the role of the Spectrum Access Systems (SAS) operating in the CBRS 3.5 GHz band, the AFCs are tasked with enabling automated spectrum sharing between unlicensed devices and incumbent users. When operating outdoors, unlicensed devices (Standard Power Access Points) are required to communicate to an AFC certain relevant operating details that the AFC uses to then provide operational parameters to the unlicensed devices (e.g., available channels) such that no harmful interference is caused to protected incumbents. Unlike the SAS, the multiple AFCs do not coordinate their activities and so are unable to take account of aggregate interference levels. Additionally, the AFCs spectrum sharing and co-existence solutions are based on interference models and regulatory rules that may prove to be too conservative and a poor fit for some actual usage scenarios. Spectrum Consumption Models (SCMs), an IEEE-standards-based approach for describing the RF requirements of radios in a spectrum space and Spectrum Access Agreements (SAAs) that make use of SCMs provide a viable toolset for examining the efficiency and efficacy of the existing FCC 6GHz rules framework. In this paper, we review the 6 GHz rules and show how they could be implemented within a SCM framework. We also show how greater use of the 6GHz spectrum could be possible if more information was exchanged with an AFC using the standards-based framework of SCMs. We explore the policy and economic impacts of enabling this flexibility. For example, this approach could lead to higher computational costs for an AFC, which would need to be balanced with the benefits of increased spectrum utilization. Through the application of our 6GHz simulation platform and the SCM/SAA framework, we are able to suggest efficiency-enhancing reforms to the existing 6GHz FCC rules. We support those recommendations with an analysis of the economic and regulatory implications on key stakeholders in this important new band for wireless services.  more » « less
Award ID(s):
2232456
PAR ID:
10660003
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
SSRN TPRC 53 Conference
Date Published:
Journal Name:
SSRN Electronic Journal
ISSN:
1556-5068
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As part of its ongoing efforts to meet the increased spectrum demand, the Federal Communications Commission (FCC) has recently opened up 150 MHz in the 3.5 GHz band for shared wireless broadband use. Access and operations in this band, aka Citizens Broadband Radio Service (CBRS), will be managed by a dynamic spectrum access system (SAS) to enable seamless spectrum sharing between secondary users (SU s) and incumbent users. Despite its benefits, SAS’s design requirements, as set by FCC, present privacy risks to SU s, merely because SU s are required to share sensitive operational information (e.g., location, identity, spectrum usage) with SAS to be able to learn about spectrum availability in their vicinity. In this paper, we propose TrustSAS, a trustworthy framework for SAS that synergizes state-of-the-art cryptographic techniques with blockchain technology in an innovative way to address these privacy issues while complying with FCC’s regulatory design requirements. We analyze the security of our framework and evaluate its performance through analysis, simulation and experimentation. We show that TrustSAS can offer high security guarantees with reasonable overhead, making it an ideal solution for addressing SU s’ privacy issues in an operational SAS environment. 
    more » « less
  2. The recent framework for tiered spectrum sharing in the 3.5 GHz band establishes rules in which multiple firms called Environment Sensing Capability operators (ESCs) may measure spectrum occupancy and sell these measurements to other firms to help facilitate spectrum access. Motived by this we consider a scenario in which two spectrum access firms (SAs) seeks to access a shared band of spectrum and must in turn purchase spectrum measurements from one of two ESCs. Given the measurements they purchase, the SA firms then compete on price to serve customers in a shared band of spectrum. We study how differences in the quality and price of the spectrum measurements impact the resulting market equilibrium between the SAs and find that having different qualities of measurements available to different SAs can lead to better economic welfare. 
    more » « less
  3. Dynamic spectrum sharing has emerged as a promising solution to address the spectrum scarcity challenge. Currently, the FCC has designated several Spectrum Access Systems (SAS) administrators to deploy their SAS that coordinates the usage of the certificated shared band(s) such as the 3.55-3.7 GHz CBRS band. The SAS ensures that the incumbent’s access to the shared band is guaranteed while also granting commercial users access rights when the incumbents are not present. However, explicitly sharing the spectrum band(s) information among participants raises privacy concerns. Certain participants, such as curious SAS administrators, have the ability to deduce the confidential operational patterns of the incumbents through the Environmental Sensing Capability (ESC) or Incumbent Informing Capability (IIC) notifications. Additionally, a curious SAS administrator may obtain the client’s operational information of other SAS administrators throughout the process of inter-SAS coordination. We propose Pri-Share, a novel privacy-preserving spectrum sharing paradigm that tailors the threshold-based private set union (PSU) and homomorphic encryption (HE) techniques to address the aforementioned privacy problems. Specifically, it enables all parties to jointly compute a unified spectrum allocation plan to resolve the potential conflicts between different parties while safeguarding the confidentiality of each stakeholder’s spectrum requirements and usage. Pri-Share also ensures that while a curious participant might ascertain the usage of a particular spectrum band, they are unable to deduce the precise identity of the party utilizing it. Besides, Pri-Share adheres to the key spectrum allocation regulations outlined by FCC (part 96), such as assurance of access rights for various priority levels. Our implementation result shows that Pri-Share can be achieved with notable computational and communication efficiency, 
    more » « less
  4. null (Ed.)
    To mitigate the long-term spectrum crunch problem, the FCC recently opened up the 6 GHz frequency band for unlicensed use. However, the existing spectrum sharing strategies cannot support the operation of access points in moving vehicles such as cars and UAVs. This is primarily because of the directionality-based spectrum sharing among the incumbent systems in this band and the high mobility of the moving vehicles, which together make it challenging to control the cross-system interference. In this paper we propose SwarmShare, a mobility-resilient spectrum sharing framework for swarm UAV networking in the 6 GHz band. We first present a mathematical formulation of the SwarmShare problem, where the objective is to maximize the spectral efficiency of the UAV network by jointly controlling the flight and transmission power of the UAVs and their association with the ground users, under the interference constraints of the incumbent system. We find that there are no closed-form mathematical models that can be used characterize the statistical behaviors of the aggregate interference from the UAVs to the incumbent system. Then we propose a data-driven three-phase spectrum sharing approach, including Initial Power Enforcement, Offline-dataset Guided Online Power Adaptation, and Reinforcement Learning-based UAV Optimization. We validate the effectiveness of SwarmShare through an extensive simulation campaign. Results indicate that, based on SwarmShare, the aggregate interference from the UAVs to the incumbent system can be effectively controlled below the target level without requiring the real-time cross-system channel state information. The mobility resilience of SwarmShare is also validated in coexisting networks with no precise UAV location information. 
    more » « less
  5. Bohlin, E (Ed.)
    Future G networks will require more dynamic, agile support for the management of radio spectrum on a fine-grained basis. The radio access network (RAN) technologies necessary to enable Dynamic Spectrum Access (DSA) have progressed significantly over the past 20 years, but the challenges of realizing the potential for DSA requires the co-evolution of technologies, business models, and regulatory policy. This paper presents a multidisciplinary research effort to develop the building blocks needed to advance DSA. In particular, we focus on the use of standards-based Spectrum Consumption Models (SCMs) and review on-going research to incorporate SCMs in an automated management framework based on incentive-compatible, technically-sound spectrum access contracts referred to as Spectrum Access Agreements (SAAs). This paper introduces the core concepts of the SCM/SAA framework, project goals, and preliminary insights into how the framework can help improve spectrum management. The research on SCM/SAA represents a bottom-up effort to develop the techno-economic building blocks or tools to facilitate marketbased experimentation and development of DSA based spectrum sharing markets, business models, and applications. 
    more » « less