skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Artificial Intelligence in Earth Science: A GeoAI Perspective
Abstract GeoAI, or geospatial artificial intelligence (AI), has transformative potential for Earth science by integrating geospatial data with AI to enhance environmental monitoring, predictive modeling, and decision‐making. This commentary, based on the Greg Leptoukh Lecture at American Geophysical Union 2024, explores the evolving role of GeoAI in addressing pressing challenges—from environmental change in the Arctic to disaster response in hurricane‐prone tropical regions. It highlights advancements in GeoAI‐driven analysis of multimodal Earth observation data, ranging from structured remote sensing imagery to semi‐structured data, and natural language texts. The integration of knowledge graphs and generative AI further strengthens GeoAI by enabling seamless integration of cross‐domain data, semantic reasoning, and knowledge inference. By bridging informatics and domain expertise, GeoAI is shaping a more intelligent and actionable digital future for Earth science.  more » « less
Award ID(s):
2120943
PAR ID:
10660090
Author(s) / Creator(s):
 
Publisher / Repository:
AGU
Date Published:
Journal Name:
Journal of Geophysical Research: Machine Learning and Computation
Volume:
2
Issue:
3
ISSN:
2993-5210
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study examines the role of human dynamics within Geospatial Artificial Intelligence (GeoAI), highlighting its potential to reshape the geospatial research field. GeoAI, emerging from the confluence of geospatial technologies and artificial intelligence, is revolutionizing our comprehension of human-environmental interactions. This revolution is powered by large-scale models trained on extensive geospatial datasets, employing deep learning to analyze complex geospatial phenomena. Our findings highlight the synergy between human intelligence and AI. Particularly, the humans-as-sensors approach enhances the accuracy of geospatial data analysis by leveraging human-centric AI, while the evolving GeoAI landscape underscores the significance of human–robot interaction and the customization of GeoAI services to meet individual needs. The concept of mixed-experts GeoAI, integrating human expertise with AI, plays a crucial role in conducting sophisticated data analyses, ensuring that human insights remain at the forefront of this field. This paper also tackles ethical issues such as privacy and bias, which are pivotal for the ethical application of GeoAI. By exploring these human-centric considerations, we discuss how the collaborations between humans and AI transform the future of work at the human-technology frontier and redefine the role of AI in geospatial contexts. 
    more » « less
  2. GeoAI, or geospatial artificial intelligence, has become a trending topic and the frontier for spatial analytics in Geography. Although much progress has been made in exploring the integration of AI and Geography, there is yet no clear definition of GeoAI, its scope of research, or a broad discussion of how it enables new ways of problem solving across social and environmental sciences. This paper provides a comprehensive overview of GeoAI research used in large-scale image analysis, and its methodological foundation, most recent progress in geospatial applications, and comparative advantages over traditional methods. We organize this review of GeoAI research according to different kinds of image or structured data, including satellite and drone images, street views, and geo-scientific data, as well as their applications in a variety of image analysis and machine vision tasks. While different applications tend to use diverse types of data and models, we summarized six major strengths of GeoAI research, including (1) enablement of large-scale analytics; (2) automation; (3) high accuracy; (4) sensitivity in detecting subtle changes; (5) tolerance of noise in data; and (6) rapid technological advancement. As GeoAI remains a rapidly evolving field, we also describe current knowledge gaps and discuss future research directions. 
    more » « less
  3. Abstract Although Artificial Intelligence (AI) projects are common and desired by many institutions and research teams, there are still relatively few success stories of AI in practical use for the Earth science community. Many AI practitioners in Earth science are trapped in the prototyping stage and their results have not yet been adopted by users. Many scientists are still hesitating to use AI in their research routine. This paper aims to capture the landscape of AI-powered geospatial data sciences by discussing the current and upcoming needs of the Earth and environmental community, such as what practical AI should look like, how to realize practical AI based on the current technical and data restrictions, and the expected outcome of AI projects and their long-term benefits and problems. This paper also discusses unavoidable changes in the near future concerning AI, such as the fast evolution of AI foundation models and AI laws, and how the Earth and environmental community should adapt to these changes. This paper provides an important reference to the geospatial data science community to adjust their research road maps, find best practices, boost the FAIRness (Findable, Accessible, Interoperable, and Reusable) aspects of AI research, and reasonably allocate human and computational resources to increase the practicality and efficiency of Earth AI research. 
    more » « less
  4. null (Ed.)
    This paper introduces a new GeoAI solution to support automated mapping of global craters on the Mars surface. Traditional crater detection algorithms suffer from the limitation of working only in a semiautomated or multi-stage manner, and most were developed to handle a specific dataset in a small subarea of Mars’ surface, hindering their transferability for global crater detection. As an alternative, we propose a GeoAI solution based on deep learning to tackle this problem effectively. Three innovative features are integrated into our object detection pipeline: (1) a feature pyramid network is leveraged to generate feature maps with rich semantics across multiple object scales; (2) prior geospatial knowledge based on the Hough transform is integrated to enable more accurate localization of potential craters; and (3) a scale-aware classifier is adopted to increase the prediction accuracy of both large and small crater instances. The results show that the proposed strategies bring a significant increase in crater detection performance than the popular Faster R-CNN model. The integration of geospatial domain knowledge into the data-driven analytics moves GeoAI research up to the next level to enable knowledge-driven GeoAI. This research can be applied to a wide variety of object detection and image analysis tasks. 
    more » « less
  5. This paper reviews trends in GeoAI research and discusses cutting-edge advances in GeoAI and its roles in accelerating environmental and social sciences. It addresses ongoing attempts to improve the predictability of GeoAI models and recent research aimed at increasing model explainability and reproducibility to ensure trustworthy geospatial findings. The paper also provides reflections on the importance of defining the science of GeoAI in terms of its fundamental principles, theories, and methods to ensure scientific rigor, social responsibility, and lasting impacts. 
    more » « less