The motion of a freely rotating prolate spheroid in a simple shear flow of a dilute polymeric solution is examined in the limit of large particle aspect ratio,$$\kappa$$. A regular perturbation expansion in the polymer concentration,$$c$$, a generalized reciprocal theorem, and slender body theory to represent the velocity field of a Newtonian fluid around the spheroid are used to obtain the$$O(c)$$correction to the particle's orientational dynamics. The resulting dynamical system predicts a range of orientational behaviours qualitatively dependent upon$$c\, De$$($$De$$is the imposed shear rate times the polymer relaxation time) and$$\kappa$$and quantitatively on$$c$$. At a small but finite$$c\, De$$, the particle spirals towards a limit cycle near the vorticity axis for all initial conditions. Upon increasing$$\kappa$$, the limit cycle becomes smaller. Thus, ultimately the particle undergoes a periodic motion around and at a small angle from the vorticity axis. At moderate$$c\, De$$, a particle starting near the flow–gradient plane departs it monotonically instead of spirally, as this plane (a limit cycle at smaller$$c\, De$$) obtains a saddle and an unstable node. The former is close to the flow direction. Upon further increasing$$c\, De$$, the saddle node changes to a stable node. Therefore, depending upon the initial condition, a particle may either approach a periodic orbit near the vorticity axis or obtain a stable orientation near the flow direction. Upon further increasing$$c\, De$$, the limit cycle near the vorticity axis vanishes, and the particle aligns with the flow direction for all starting orientations.
more »
« less
This content will become publicly available on September 10, 2026
Extensional rheology of dilute suspensions of spheres in polymeric liquids
The extensional rheology of dilute suspensions of spheres in viscoelastic/polymeric liquids is studied computationally. At low polymer concentration$$c$$and Deborah number$$\textit{De}$$(imposed extension rate times polymer relaxation time), a wake of highly stretched polymers forms downstream of the particles due to larger local velocity gradients than the imposed flow, indicated by$$\Delta \textit{De}_{\textit{local}}\gt 0$$. This increases the suspension’s extensional viscosity with time and$$\textit{De}$$for$$De \lt 0.5$$. When$$\textit{De}$$exceeds 0.5, the coil-stretch transition value, the fully stretched polymers from the far-field collapse in regions with$$\Delta \textit{De}_{\textit{local}} \lt 0$$(lower velocity gradient) around the particle’s stagnation points, reducing suspension viscosity relative to the particle-free liquid. The interaction between local flow and polymers intensifies with increasing$$c$$. Highly stretched polymers impede local flow, reducing$$\Delta \textit{De}_{\textit{local}}$$, while$$\Delta \textit{De}_{\textit{local}}$$increases in regions with collapsed polymers. Initially, increasing$$c$$aligns$$\Delta \textit{De}_{\textit{local}}$$and local polymer stretch with far-field values, diminishing particle–polymer interaction effects. However, beyond a certain$$c$$, a new mechanism emerges. At low$$c$$, fluid three particle radii upstream exhibits$$\Delta \textit{De}_{\textit{local}} \gt 0$$, stretching polymers beyond their undisturbed state. As$$c$$increases, however,$$\Delta \textit{De}_{\textit{local}}$$in this region becomes negative, collapsing polymers and resulting in increasingly negative stress from particle–polymer interactions at large$$\textit{De}$$and time. At high$$c$$, this negative interaction stress scales as$$c^2$$, surpassing the linear increase of particle-free polymer stress, making dilute sphere concentrations more effective at reducing the viscosity of viscoelastic liquids at larger$$\textit{De}$$and$$c$$.
more »
« less
- Award ID(s):
- 2206851
- PAR ID:
- 10660094
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 1018
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Pressure-driven flows of viscoelastic fluids in narrow non-uniform geometries are common in physiological flows and various industrial applications. For such flows, one of the main interests is understanding the relationship between the flow rate$$q$$and the pressure drop$$\Delta p$$, which, to date, is studied primarily using numerical simulations. We analyse the flow of the Oldroyd-B fluid in slowly varying arbitrarily shaped, contracting channels and present a theoretical framework for calculating the$$q-\Delta p$$relation. We apply lubrication theory and consider the ultra-dilute limit, in which the velocity profile remains parabolic and Newtonian, resulting in a one-way coupling between the velocity and polymer conformation tensor. This one-way coupling enables us to derive closed-form expressions for the conformation tensor and the flow rate–pressure drop relation for arbitrary values of the Deborah number ($$De$$). Furthermore, we provide analytical expressions for the conformation tensor and the$$q-\Delta p$$relation in the high-Deborah-number limit, complementing our previous low-Deborah-number lubrication analysis. We reveal that the pressure drop in the contraction monotonically decreases with$$De$$, having linear scaling at high Deborah numbers, and identify the physical mechanisms governing the pressure drop reduction. We further elucidate the spatial relaxation of elastic stresses and pressure gradient in the exit channel following the contraction and show that the downstream distance required for such relaxation scales linearly with$$De$$.more » « less
-
Electrophoresis is the motion of a charged colloidal particle in an electrolyte under an applied electric field. The electrophoretic velocity of a spherical particle depends on the dimensionless electric field strength$$\beta =a^*e^*E_\infty ^*/k_B^*T^*$$, defined as the ratio of the product of the applied electric field magnitude$$E_\infty ^*$$and particle radius$$a^*$$, to the thermal voltage$$k_B^*T^*/e^*$$, where$$k_B^*$$is Boltzmann's constant,$$T^*$$is the absolute temperature, and$$e^*$$is the charge on a proton. In this paper, we develop a spectral element algorithm to compute the electrophoretic velocity of a spherical, rigid, dielectric particle, of fixed dimensionless surface charge density$$\sigma$$over a wide range of$$\beta$$. Here,$$\sigma =(e^*a^*/\epsilon ^*k_B^*T^*)\sigma ^*$$, where$$\sigma ^*$$is the dimensional surface charge density, and$$\epsilon ^*$$is the permittivity of the electrolyte. For moderately charged particles ($$\sigma ={O}(1)$$), the electrophoretic velocity is linear in$$\beta$$when$$\beta \ll 1$$, and its dependence on the ratio of the Debye length ($$1/\kappa ^*$$) to particle radius (denoted by$$\delta =1/(\kappa ^*a^*)$$) agrees with Henry's formula. As$$\beta$$increases, the nonlinear contribution to the electrophoretic velocity becomes prominent, and the onset of this behaviour is$$\delta$$-dependent. For$$\beta \gg 1$$, the electrophoretic velocity again becomes linear in field strength, approaching the Hückel limit of electrophoresis in a dielectric medium, for all$$\delta$$. For highly charged particles ($$\sigma \gg 1$$) in the thin-Debye-layer limit ($$\delta \ll 1$$), our computations are in good agreement with recent experimental and asymptotic results.more » « less
-
Lubrication theory is adapted to incorporate the large normal stresses that occur for order-one Deborah numbers,$$De$$, the ratio of the relaxation time to the residence time. Comparing with the pressure drop for a Newtonian viscous fluid with a viscosity equal to that of an Oldroyd-B fluid in steady simple shear, we find numerically a reduced pressure drop through a contraction and an increased pressure drop through an expansion, both changing linearly with$$De$$at high$$De$$. For a constriction, there is a smaller pressure drop that plateaus at high$$De$$. For a contraction, much of the change in pressure drop occurs in the stress relaxation in a long exit channel. An asymptotic analysis for high$$De$$, based on the idea that normal stresses are stretched by an accelerating flow in proportion to the square of the velocity, reveals that the large linear changes in pressure drop are due to higher normal stresses pulling the fluid through the narrowest gap. A secondary cause of the reduction is that the elastic shear stresses do not have time to build up to their steady-state equilibrium value while they accelerate through a contraction. We find for a contraction or expansion that the high$$De$$analysis works well for$$De>0.4$$.more » « less
-
Abstract This paper will study almost everywhere behaviors of functions on partition spaces of cardinals possessing suitable partition properties. Almost everywhere continuity and monotonicity properties for functions on partition spaces will be established. These results will be applied to distinguish the cardinality of certain subsets of the power set of partition cardinals. The following summarizes the main results proved under suitable partition hypotheses.•If$$\kappa $$is a cardinal,$$\epsilon < \kappa $$,$${\mathrm {cof}}(\epsilon ) = \omega $$,$$\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$$and$$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$$, then$$\Phi $$satisfies the almost everywhere short length continuity property: There is a club$$C \subseteq \kappa $$and a$$\delta < \epsilon $$so that for all$$f,g \in [C]^\epsilon _*$$, if$$f \upharpoonright \delta = g \upharpoonright \delta $$and$$\sup (f) = \sup (g)$$, then$$\Phi (f) = \Phi (g)$$.•If$$\kappa $$is a cardinal,$$\epsilon $$is countable,$$\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$$holds and$$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$$, then$$\Phi $$satisfies the strong almost everywhere short length continuity property: There is a club$$C \subseteq \kappa $$and finitely many ordinals$$\delta _0, ..., \delta _k \leq \epsilon $$so that for all$$f,g \in [C]^\epsilon _*$$, if for all$$0 \leq i \leq k$$,$$\sup (f \upharpoonright \delta _i) = \sup (g \upharpoonright \delta _i)$$, then$$\Phi (f) = \Phi (g)$$.•If$$\kappa $$satisfies$$\kappa \rightarrow _* (\kappa )^\kappa _2$$,$$\epsilon \leq \kappa $$and$$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$$, then$$\Phi $$satisfies the almost everywhere monotonicity property: There is a club$$C \subseteq \kappa $$so that for all$$f,g \in [C]^\epsilon _*$$, if for all$$\alpha < \epsilon $$,$$f(\alpha ) \leq g(\alpha )$$, then$$\Phi (f) \leq \Phi (g)$$.•Suppose dependent choice ($$\mathsf {DC}$$),$${\omega _1} \rightarrow _* ({\omega _1})^{\omega _1}_2$$and the almost everywhere short length club uniformization principle for$${\omega _1}$$hold. Then every function$$\Phi : [{\omega _1}]^{\omega _1}_* \rightarrow {\omega _1}$$satisfies a finite continuity property with respect to closure points: Let$$\mathfrak {C}_f$$be the club of$$\alpha < {\omega _1}$$so that$$\sup (f \upharpoonright \alpha ) = \alpha $$. There is a club$$C \subseteq {\omega _1}$$and finitely many functions$$\Upsilon _0, ..., \Upsilon _{n - 1} : [C]^{\omega _1}_* \rightarrow {\omega _1}$$so that for all$$f \in [C]^{\omega _1}_*$$, for all$$g \in [C]^{\omega _1}_*$$, if$$\mathfrak {C}_g = \mathfrak {C}_f$$and for all$$i < n$$,$$\sup (g \upharpoonright \Upsilon _i(f)) = \sup (f \upharpoonright \Upsilon _i(f))$$, then$$\Phi (g) = \Phi (f)$$.•Suppose$$\kappa $$satisfies$$\kappa \rightarrow _* (\kappa )^\epsilon _2$$for all$$\epsilon < \kappa $$. For all$$\chi < \kappa $$,$$[\kappa ]^{<\kappa }$$does not inject into$${}^\chi \mathrm {ON}$$, the class of$$\chi $$-length sequences of ordinals, and therefore,$$|[\kappa ]^\chi | < |[\kappa ]^{<\kappa }|$$. As a consequence, under the axiom of determinacy$$(\mathsf {AD})$$, these two cardinality results hold when$$\kappa $$is one of the following weak or strong partition cardinals of determinacy:$${\omega _1}$$,$$\omega _2$$,$$\boldsymbol {\delta }_n^1$$(for all$$1 \leq n < \omega $$) and$$\boldsymbol {\delta }^2_1$$(assuming in addition$$\mathsf {DC}_{\mathbb {R}}$$).more » « less
An official website of the United States government
