skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 29, 2026

Title: From roots to leaves: Tree growth phenology in forest ecosystems
Purpose of Review This review synthesizes recent advancements and identifies knowledge gaps in the tree growth phenology of both belowground and aboveground organs in extra-tropical forest ecosystems. Phenology, the study of periodic plant life cycle events, is crucial for understanding tree fitness, competition for resources, and the impacts of climate change on ecosystems. By examining the phenological processes of various tree organs, the review aims to provide a comprehensive understanding of how these processes are interconnected and how they influence overall tree growth and ecosystem dynamics. The review aims to provide a comprehensive overview of current knowledge, highlight recent technological advancements, and identify critical areas where further research is needed. Recent Findings The review highlights significant progress in monitoring leaf and canopy phenology, thanks to advancements in remote sensing and automated observation systems. These technologies have enhanced our ability to track seasonal changes in leaf development and canopy dynamics more accurately and over larger areas. There has also been a substantial increase in research on wood formation in stems, expanding beyond northern hemisphere conifers to include a broader range of functional groups. However, despite these efforts, identifying the precise drivers of wood formation remains challenging, necessitating further integration of molecular and eco-physiological insights. A critical area of focus is root phenology, encompassing both primary and secondary growth. Despite the fundamental role of roots in tree physiology and ecosystem dynamics, our understanding of root phenology remains limited, primarily due to the inherent difficulties in monitoring root growth. The review emphasizes the need for more detailed studies on root growth processes and the development of new methodologies and technologies to improve root phenology assessments. Summary The review highlights the importance of incorporating eco-physiological insights into phenological assessments. Leaf and canopy phenology would benefit from more studies focusing on autumnal events. Indeed, compared to the onset of the growing season, much less is known about its end, despite its critical importance for understanding processes such as carbon uptake and nutrient cycle. Advancing knowledge of wood growth phenology will require greater focus on angiosperms, as research on xylogenesis has historically been centered on gymnosperms. This will likely necessitate the development of new, tailored methodologies to address the characteristics of angiosperm wood formation. Similarly, further exploration of phloem phenology is essential to better understand the links between phenological processes across different organs. Finally, compared to other organs, root growth remains less well understood, underscoring the need for deepening the investigation on root phenology in the coming years.  more » « less
Award ID(s):
2224545
PAR ID:
10660267
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Current Forestry Reports
Volume:
11
Issue:
1
ISSN:
2198-6436
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Linking drought to the timing of physiological processes governing tree growth remains one limitation in forecasting climate change effects on tropical trees. Using dendrometers, we measured fine‐scale growth for 96 trees of 25 species from 2013 to 2016 in an everwet forest in Puerto Rico. Rainfall over this time span varied, including an unusual, severe El Niño drought in 2015. We assessed how growing season onset, median day, conclusion, and length varied with absolute growth rate and tree size over time. Stem growth was seasonal, beginning in February, peaking in July, and ending in November. Species growth rates varied between 0 and 8 mm/year and correlated weakly with specific leaf area, leaf phosphorus, and leaf nitrogen, and to a lesser degree with wood specific gravity and plant height. Drought and tree growth were decoupled, and drought lengthened and increased variation in growing season length. During the 2015 drought, many trees terminated growth early but did not necessarily grow less. In the year following drought, trees grew more over a shorter growing season, with many smaller trees showing a post‐drought increase in growth. We attribute the increased growth of smaller trees to release from light limitation as the canopy thinned because of the drought, and less inferred hydraulic stress than larger trees during drought. Soil type accounted for interannual and interspecific differences, with the finest Zarzal clays reducing tree growth. We conclude that drought affects the phenological timing of tree growth and favors the post‐drought growth of smaller, sub‐canopy trees in this everwet forest. Abstract in Spanish is available with online material. 
    more » « less
  2. Summary Interactions between carbon (C) and nitrogen (N) cycles in terrestrial ecosystems are simulated in advanced vegetation models, yet methodologies vary widely, leading to divergent simulations of past land C balance trends. This underscores the need to reassess our understanding of ecosystem processes, given recent theoretical advancements and empirical data. We review current knowledge, emphasising evidence from experiments and trait data compilations for vegetation responses to CO2and N input, alongside theoretical and ecological principles for modelling. N fertilisation increases leaf N content but inconsistently enhances leaf‐level photosynthetic capacity. Whole‐plant responses include increased leaf area and biomass, with reduced root allocation and increased aboveground biomass. Elevated atmospheric CO2also boosts leaf area and biomass but intensifies belowground allocation, depleting soil N and likely reducing N losses. Global leaf traits data confirm these findings, indicating that soil N availability influences leaf N content more than photosynthetic capacity. A demonstration model based on the functional balance hypothesis accurately predicts responses to N and CO2fertilisation on tissue allocation, growth and biomass, offering a path to reduce uncertainty in global C cycle projections. 
    more » « less
  3. Abstract The response of plant leaf and root phenology and biomass in the Arctic to global change remains unclear due to the lack of synchronous measurements of above- and belowground parts. Our objective was to determine the phenological dynamics of the above- and belowground parts of Eriophorum vaginatum in the Arctic and its response to warming. We established a common garden located at Toolik Lake Field Station; tussocks of E. vaginatum from three locations, Coldfoot, Toolik Lake and Sagwon, were transplanted into the common garden. Control and warming treatments for E. vaginatum were set up at the Toolik Lake during the growing seasons of 2016 and 2017. Digital cameras, a handheld sensor and minirhizotrons were used to simultaneously observe leaf greenness, normalized difference vegetation index and root length dynamics, respectively. Leaf and root growth rates of E. vaginatum were asynchronous such that the timing of maximal leaf growth (mid-July) was about 28 days earlier than that of root growth. Warming of air temperature by 1 °C delayed the timing of leaf senescence and thus prolonged the growing season, but the temperature increase had no significant effect on root phenology. The seasonal dynamics of leaf biomass were affected by air temperature, whereas root biomass was correlated with soil thaw depth. Therefore, we suggest that leaf and root components should be considered comprehensively when using carbon and nutrient cycle models, as above- and belowground productivity and functional traits may have a different response to climate warming. 
    more » « less
  4. Spaceborne spectroscopic imaging offers the potential to improve our understanding of biodiversity and ecosystem services, particularly for challenging and rich environments like mangroves. Understanding the signals present in large volumes of high-dimensional spectroscopic observations of vegetation communities requires the characterization of seasonal phenology and response to environmental conditions. This analysis leverages both spectroscopic and phenological information to characterize vegetation communities in the Sundarban riverine mangrove forest of the Ganges–Brahmaputra delta. Parallel analyses of surface reflectance spectra from NASA’s EMIT imaging spectrometer and MODIS vegetation abundance time series (2000–2022) reveal the spectroscopic and phenological diversity of the Sundarban mangrove communities. A comparison of spectral and temporal feature spaces rendered with low-order principal components and 3D embeddings from Uniform Manifold Approximation and Projection (UMAP) reveals similar structures with multiple spectral and temporal endmembers and multiple internal amplitude continua for both EMIT reflectance and MODIS Enhanced Vegetation Index (EVI) phenology. The spectral and temporal feature spaces of the Sundarban represent independent observations sharing a common structure that is driven by the physical processes controlling tree canopy spectral properties and their temporal evolution. Spectral and phenological endmembers reside at the peripheries of the mangrove forest with multiple outward gradients in amplitude of reflectance and phenology within the forest. Longitudinal gradients of both phenology and reflectance amplitude coincide with LiDAR-derived gradients in tree canopy height and sub-canopy ground elevation, suggesting the influence of surface hydrology and sediment deposition. RGB composite maps of both linear (PC) and nonlinear (UMAP) 3D feature spaces reveal a strong contrast between the phenological and spectroscopic diversity of the eastern Sundarban and the less diverse western Sundarban. 
    more » « less
  5. Abstract Severe drought can cause lagged effects on tree physiology that negatively impact forest functioning for years. These “drought legacy effects” have been widely documented in tree‐ring records and could have important implications for our understanding of broader scale forest carbon cycling. However, legacy effects in tree‐ring increments may be decoupled from ecosystem fluxes due to (a) postdrought alterations in carbon allocation patterns; (b) temporal asynchrony between radial growth and carbon uptake; and (c) dendrochronological sampling biases. In order to link legacy effects from tree rings to whole forests, we leveraged a rich dataset from a Midwestern US forest that was severely impacted by a drought in 2012. At this site, we compiled tree‐ring records, leaf‐level gas exchange, eddy flux measurements, dendrometer band data, and satellite remote sensing estimates of greenness and leaf area before, during, and after the 2012 drought. After accounting for the relative abundance of tree species in the stand, we estimate that legacy effects led to ~10% reductions in tree‐ring width increments in the year following the severe drought. Despite this stand‐scale reduction in radial growth, we found that leaf‐level photosynthesis, gross primary productivity (GPP), and vegetation greenness were not suppressed in the year following the 2012 drought. Neither temporal asynchrony between radial growth and carbon uptake nor sampling biases could explain our observations of legacy effects in tree rings but not in GPP. Instead, elevated leaf‐level photosynthesis co‐occurred with reduced leaf area in early 2013, indicating that resources may have been allocated away from radial growth in conjunction with postdrought upregulation of photosynthesis and repair of canopy damage. Collectively, our results indicate that tree‐ring legacy effects were not observed in other canopy processes, and that postdrought canopy allocation could be an important mechanism that decouples tree‐ring signals from GPP. 
    more » « less