Abstract How a developing organ robustly coordinates the cellular mechanics and growth to reach a final size and shape remains poorly understood. Through iterations between experiments and model simulations that include a mechanistic description of interkinetic nuclear migration, we show that the local curvature, height, and nuclear positioning of cells in theDrosophilawing imaginal disc are defined by the concurrent patterning of actomyosin contractility, cell-ECM adhesion, ECM stiffness, and interfacial membrane tension. We show that increasing cell proliferation via different growth-promoting pathways results in two distinct phenotypes. Triggering proliferation through insulin signaling increases basal curvature, but an increase in growth through Dpp signaling and Myc causes tissue flattening. These distinct phenotypic outcomes arise from differences in how each growth pathway regulates the cellular cytoskeleton, including contractility and cell-ECM adhesion. The coupled regulation of proliferation and cytoskeletal regulators is a general strategy to meet the multiple context-dependent criteria defining tissue morphogenesis.
more »
« less
This content will become publicly available on September 5, 2026
An ancient and essential miRNA family controls cellular interaction pathways in C. elegans
The transition from unicellular to multicellular life required the acquisition of coordinated and regulated cellular behaviors, including adhesion and migration. In metazoans, this involves adhesion proteins, signaling systems, and an elaborate extracellular matrix (ECM) that contributes to adhesion and signaling interactions. Innovations that enabled complex multicellularity occurred through new genes in these pathways, novel functions for existing genes, and regulatory changes. Gene regulation by microRNAs (miRNAs) expanded with multicellularity. A single miRNA, miR-100, arose in the last common eumetazoan ancestor and is widely conserved across animals. We reveal the molecular function of itsC. eleganshomolog, the miR-51 family. This family acts in a dose-dependent manner to control morphogenesis by regulating several genes involved in cell signaling, adhesion, and migration, including ECM modifiers—specifically heparan sulfate sulfotransferases (HSTs). Some of these targets are also predicted to be conserved targets across vertebrates. Our work suggests that this miRNA provided an innovation in the regulation of cellular interactions early in metazoan evolution.
more »
« less
- Award ID(s):
- 2238425
- PAR ID:
- 10660277
- Publisher / Repository:
- AAAS
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 11
- Issue:
- 36
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Rafflesiaceae is a family of endangered plants whose members are solely parasitic to the tropical grape vineTetrastigma(Vitaceae). Currently, the genetics of their crosstalk with the host remains unexplored. In this study, we use homology-basedin silicoapproaches to characterize micro-RNAs (miRNAs) expressed bySapria himalayanaandRafflesia cantleyifrom published omics data. Derived from secondary structures or hairpins, miRNAs are small regulators of gene expression. We found that some plant-conserved miRNA still exists in Rafflesiaceae. Out of 9 highly conserved miRNA families in plants, 7 families (156/157, 159/319, 160, 165/166, 171, 172, 390) were identified with a total of 22 variants across Rafflesiaceae. Some miRNAs were missing endogenous targets and may have evolved to target host miRNA, though this requires experimental verification. Rafflesiaceae miRNA promoters are mostly inducible by ethylene that mediates stress response in the host but could be perceived by the parasites as a signal for growth. This study provides evidence that certain miRNAs with ancient origins in land plants still exist in Rafflesiaceae, though some may have been coopted by parasites to target host genes.more » « less
-
We show here thatmir-279/996are absolutely essential for development and function of Johnston's organ (JO), the primary proprioceptive and auditory organ inDrosophila. Their deletion results in highly aberrant cell fate determination, including loss of scolopale cells and ectopic neurons, and mutants are electrophysiologically deaf. In vivo activity sensors and mosaic analyses indicate that these seed-related miRNAs function autonomously to suppress neural fate in nonneuronal cells. Finally, genetic interactions pinpoint two neural targets (elavandinsensible) that underlie miRNA mutant JO phenotypes. This work uncovers how critical post-transcriptional regulation of specific miRNA targets governs cell specification and function of the auditory system.more » « less
-
How a developing organ robustly coordinates the cellular mechanics and growth to reach a final size and shape remains poorly understood. Through iterations between experiments and model simulations that include a mechanistic description of interkinetic nuclear migration, we show that the local curvature, height, and nuclear positioning of cells in the Drosophila wing imaginal disc are defined by the concurrent patterning of actomyosin contractility, cell-ECM adhesion, ECM stiffness, and interfacial membrane tension. We show that increasing cell proliferation via different growth-promoting pathways results in two distinct phenotypes. Triggering proliferation through insulin signaling increases basal curvature, but an increase in growth through Dpp signaling and Myc causes tissue flattening. These distinct phenotypic outcomes arise from differences in how each growth pathway regulates the cellular cytoskeleton, including contractility and cell-ECM adhesion. The coupled regulation of proliferation and cytoskeletal regulators is a general strategy to meet the multiple context-dependent criteria defining tissue morphogenesis.more » « less
-
Abstract Identification of the molecular networks that facilitated the evolution of multicellular animals from their unicellular ancestors is a fundamental problem in evolutionary cellular biology. Choanoflagellates are recognized as the closest extant nonmetazoan ancestors to animals. These unicellular eukaryotes can adopt a multicellular‐like “rosette” state. Therefore, they are compelling models for the study of early multicellularity. Comparative studies revealed that a number of putative human orthologs are present in choanoflagellate genomes, suggesting that a subset of these genes were necessary for the emergence of multicellularity. However, previous work is largely based on sequence alignments alone, which does not confirm structural nor functional similarity. Here, we focus on the PDZ domain, a peptide‐binding domain which plays critical roles in myriad cellular signaling networks and which underwent a gene family expansion in metazoan lineages. Using a customized sequence similarity search algorithm, we identified 178 PDZ domains in theMonosiga brevicollisproteome. This includes 11 previously unidentified sequences, which we analyzed using Rosetta and homology modeling. To assess conservation of protein structure, we solved high‐resolution crystal structures of representativeM. brevicollisPDZ domains that are homologous to human Dlg1 PDZ2, Dlg1 PDZ3, GIPC, and SHANK1 PDZ domains. To assess functional conservation, we calculated binding affinities for mbGIPC, mbSHANK1, mbSNX27, and mbDLG‐3 PDZ domains fromM. brevicollis. Overall, we find that peptide selectivity is generally conserved between these two disparate organisms, with one possible exception, mbDLG‐3. Overall, our results provide novel insight into signaling pathways in a choanoflagellate model of primitive multicellularity.more » « less
An official website of the United States government
