Research in different agricultural sectors, including in crop loss estimation during flood and yield estimation, substantially rely on inundation information. Spaceborne remote sensing has widely been used in the mapping and monitoring of floods. However, the inability of optical remote sensing to cloud penetration and the scarcity of fine temporal resolution SAR data hinder the application of flood mapping in many cases. Soil Moisture Active Passive (SMAP) level 4 products, which are model-driven soil moisture data derived from SMAP observations and are available at 3-h intervals, can offer an intermediate but effective solution. This study maps flood progress in croplands by incorporating SMAP surface soil moisture, soil physical properties, and national floodplain information. Soil moisture above the effective soil porosity is a direct indication of soil saturation. Soil moisture also increases considerably during a flood event. Therefore, this approach took into account three conditions to map the flooded pixels: a minimum of 0.05 m3m−3 increment in soil moisture from pre-flood to post-flood condition, soil moisture above the effective soil porosity, and the holding of saturation condition for the 72 consecutive hours. Results indicated that the SMAP-derived maps were able to successfully map most of the flooded areas in the reference maps in the majority of the cases, though with some degree of overestimation (due to the coarse spatial resolution of SMAP). Finally, the inundated croplands are extracted from saturated areas by Spatial Hazard Zone areas (SHFA) of Federal Emergency Management Agency (FEMA) and cropland data layer (CDL). The flood maps extracted from SMAP data are validated with FEMA-declared affected counties as well as with flood maps from other sources.
more »
« less
Validation of Soil Temperature Sensing Depth Estimates Using High-Temporal Resolution Data from NEON and SMAP Missions
Passive microwave remote sensing of soil moisture is crucial for monitoring the Earth’s water cycle and surface dynamics. The penetration depth during this process is significant, as it influences the accuracy of retrieved soil moisture data. Within L-band remote sensing, tools such as the τ-z model interpret microwave emissions to estimate soil moisture, taking into account the complex interactions between soil and radiation. However, in validating these models against high-temporal-resolution, ground-based measurements, especially from extensive networks like the Terrestrial National Ecological Observatory Network (NEON), further research and validation efforts are needed. This study comprehensively validates the τ-z model’s ability to estimate the soil temperature sensing depth (zTeff) using data from the NEON and Soil Moisture Active Passive (SMAP) satellite missions. A harmonization process was conducted to align the spatial and temporal scales of the two datasets, enabling rigorous validation. We compared soil optical depth (τ)—a parameter capable of theoretically unifying sensing depth representations across wet soil (~0.05 m) to extreme dry/frozen conditions (e.g., up to ~1500 m in ice-equivalent scenarios)—and geometric depth (z) frameworks against outputs from the τ-z model and NEON’s in situ profiles. The results show that: (1) for the profiles that satisfy the monotonic assumption by the τ-z model, zTeff fits the prediction well at about 0.2 τ for the average; (2) Combining SMAP’s soil moisture, the τ-z model achieves high accuracy in estimating zTeff, with RMSD (0.05 m) and unRMSD (0.03 m), and correlations (0.67) between estimated and observed values. The findings are expected to advance remote sensing techniques in various fields, including agriculture, hydrology, and climate change research.
more »
« less
- Award ID(s):
- 2217817
- PAR ID:
- 10660640
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Remote Sensing
- Volume:
- 17
- Issue:
- 23
- ISSN:
- 2072-4292
- Page Range / eLocation ID:
- 3845
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Root zone soil moisture (RZSM) is a dominant control on crop productivity, land-atmosphere feedbacks, and the hydrologic response of watersheds. Despite its importance, obtaining gap-free daily moisture data remains challenging. For example, remote sensing-based soil moisture products often have gaps arising from limits posed by the presence of clouds and satellite revisit period. Here, we retrieve a proxy of daily RZSM using the actual evapotranspiration (ETa) estimates from Surface Flux Equilibrium Theory (SFET). Our method is calibration-less, parsimonious, and only needs widely available meteorological data and standard land-surface parameters. Evaluation of the retrievals at Oklahoma Mesonet sites shows that our method, overall, matches or outperforms widely available RZSM estimates from three markedly different approaches, viz. remote sensing data based Atmosphere-Land EXchange Inversion (ALEXI) model, the Variable Infiltration Capacity (VIC) model, and the Soil Moisture Active Passive (SMAP) mission RZSM data product. When compared with in-situ observations, unbiased root mean square difference of retrieved RZSM were 0.03 (m 3 m −3 ), 0.06 (m 3 m −3 ), and 0.05 (m 3 m −3 ) for our method, the ALEXI model, and the VIC model, respectively. Better performance of our method is attributed to the use of both SFET for the estimation of ETa and non-parametric kernel-based method used to relate the RZSM with ETa. RZSM from our method may serve as a more accurate and temporally-complete alternative for a variety of applications including mapping of agricultural droughts, assimilation of RZSM for hydrometeorological forecasting, and design of optimal irrigation schedules.more » « less
-
Abstract Understanding soil moisture variability and estimating high‐resolution soil moisture at subfield to field scales is critical for agricultural research and applications. However, systematic investigation of subfield scale soil moisture variability over cropland is still lacking from both measurement and satellite remote sensing. In this study, we aim to investigate (1) the characteristics of within‐field soil moisture distribution over typical cropland in the US Midwest and (2) the capabilities of satellite remote sensing in capturing the spatiotemporal variabilities of soil moisture at subfield scale. Specifically, we conducted soil moisture field experiments in three typical commercial agricultural fields (∼85 acres per field) in central Illinois, representing typical commercial farmlands in the US Midwest, and compared the soil moisture measurements with satellite remote sensing data from optical and active microwave sensors. In each field, dense soil moisture samples (spaced at 50–60 m) were obtained for two dry down events in May and July 2021, and multiple long‐term soil moisture stations were installed. We found prominent time‐invariant spatial structures of soil moisture at within‐field scales both during the dry down period and over longer time scales, and the stability is minimally affected by plant water use during the growing season. Comparing the field campaign measurements with satellite remote sensing data, we found that surface reflectance of shortwave infrared bands, such as SWIR1 (1610 nm) from Sentinel‐2, can capture relative surface soil moisture patterns at within‐field scales, but their relationships with soil moisture are field specific. These findings and the improved understanding of within‐field soil moisture dynamics could potentially help future research on high‐resolution soil moisture estimation with multi‐source remote sensing data.more » « less
-
Soil organic carbon (SOC) represents the largest terrestrial carbon pool. Effectively monitoring SOC at high spatial resolution is crucial for estimating carbon budgets at the ecosystem scale and informing climate change mitigation efforts at the regional scale. Traditional soil sampling methods, however, are laborious and expensive. Remote sensing platforms can be used to survey large landscapes to meet the need for rapid and cost-effective approaches for quantifying SOC at landscape to regional scales, if relationships between remotely sensed variables and SOC can be established. We developed a workflow to analyze and predict SOC content based on National Ecological Observatory Network (NEON) Airborne Observation Platform (AOP) remote sensing data. First, we benchmarked related tools and developed reproducible workflows using NEON remote sensing datasets. Hyperspectral data were extracted from the locations where NEON soil data exist. Additional variables from the LiDAR data and key metadata (climate and land cover) were extracted for those locations. Random Forest and Partial Least Squares Regression techniques were then used to create models for fine-scale SOC prediction. Cross-validation was embedded in the model creation step. The most important covariates were selected through recursive feature elimination, stepwise selection, and expert judgment. Preliminary results indicate that machine learning models can re-produce SOC measurements in testing datasets. Key predictors include topographic variables, vegetation indices, and specific wavelength bands in hyperspectral images. We are further validating our algorithms using SOC data from ISCN (International Soil Carbon Network) and SoDaH (SOils DAta Harmonization database) that are co-located with NEON sites. We are creating high-resolution SOC maps for 0-30 cm depth at NEON sites and testing our algorithms for different land use types. Our work paves the way for a broader assessment of SOC stocks using remote sensing observations, and our high-resolution SOC maps will potentially help quantify carbon budgets across heterogeneous landscapes.more » « less
-
Dependence of Soil Moisture and Strength on Topography and Vegetation Varies Within a SMAP Grid CellOff-road vehicle mobility assessments rely on fine-resolution (~10 m) estimates of soil moisture and strength across the region of interest. Such estimates are often produced by downscaling soil moisture from a microwave satellite like SMAP, then using the soil moisture in a soil strength model. Soil moisture downscaling methods typically assume consistent relationships between the moisture and topographic, vegetation, and soil composition characteristics within the microwave satellite grid cells. The objective of this study is to examine whether soil moisture and strength exhibit heterogenous dependencies on topography, vegetation, and soil composition characteristics within a SMAP grid cell. Soil moisture and strength data were collected at four geographically separated regions within a 9 km SMAP grid cell in the Front Range foothills of northern Colorado. Laboratory methods and pedotransfer functions were used to characterize soil attributes, and remote sensing data were used to determine topographic and vegetation attributes. Pearson correlation analyses were used to quantify the direction, strength, and significance of the relationships of both soil moisture and strength with topography, vegetation, and soil composition. Contrary to the common assumption, spatial variations in the slope and correlation of the relationships are observed for both soil moisture and strength. The findings indicate that improved predictions of soil moisture and soil strength may be achievable by soil moisture downscaling procedures that use spatially variable parameters across the downscaling extent.more » « less
An official website of the United States government

