skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: A negative feedback loop between TERMINAL FLOWER1 and LEAFY protects inflorescence indeterminacy
Inflorescences of flowering plants adopt diverse genetically programmed and environmentally tuned architectures. By contrast, continued maintenance of the stem-cell pool within the apical meristem is unresponsive to environmental cues. Through a combination of modeling and experimentation inArabidopsis, we reveal a negative feedback loop that buffers environmental signals. This loop comprises the determinacy-promoting pioneer transcription factor LEAFY (LFY) and the indeterminacy-promoting transcriptional co-repressor TERMINAL FLOWER1 (TFL1). At the transition to the flower-producing reproductive phase, LFY directly and quantitatively up-regulates expression ofTFL1. TFL1 in turn negatively feeds back onLFYto prevent LFY overaccumulation. This blocks inflorescence termination even under strong florally inductive signals. Our work uncovers a mechanism for robust environmental buffering involving differential responses of two cell populations to the same environmental stimulus.  more » « less
Award ID(s):
2319036
PAR ID:
10661075
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Science
Date Published:
Journal Name:
Science
ISSN:
0036-8075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Albright, Michaeline_B N (Ed.)
    ABSTRACT Microorganisms often inhabit environments that are suboptimal for growth and reproduction. To survive when challenged by such conditions, individuals engage in dormancy, where they enter a metabolically inactive state. For this persistence strategy to confer an evolutionary advantage, microorganisms must be able to resuscitate and reproduce when conditions improve. Among bacteria in the phylum Actinomycetota, dormancy can be terminated by resuscitation-promoting factor (Rpf), an exoenzyme that hydrolyzes glycosidic bonds in the peptidoglycan of cell walls. We characterized Rpf fromMicrococcusKBS0714, a bacterium isolated from agricultural soil. The protein exhibited high substrate affinityin vitro, even though resuscitation was maximized in live-cell assays at micromolar concentrations. Site-directed mutations at conserved catalytic sites significantly reduced or eliminated resuscitation, as did the deletion of repeating motifs in a lectin-encoding linker region. We then tested the effects of recombinant Rpf fromMicrococcusKBS0714 on a diverse set of dormant soil bacteria. Patterns of resuscitation mapped onto strain phylogeny, which reflected core features of the cell envelope. Additionally, the direction and magnitude of the Rpf effect were associated with functional traits, in particular, aspects of the moisture niche and biofilm production, which are critical for understanding dormancy and the persistence of microbial populations in soils. These findings expand our understanding of how Rpf may affect seed bank dynamics with implications for the diversity and functioning of microorganisms in terrestrial ecosystems. IMPORTANCEDormancy is a process whereby individuals enter a reversible state of reduced metabolic activity. In fluctuating environments, dormancy protects individuals from unfavorable conditions, enhancing fitness and buffering populations against extinction. However, waking up from dormancy is a critical yet risky decision. Some bacteria resuscitate stochastically, while others rely on environmental cues or signals from neighboring cells to transition back to active growth. Resuscitation-promoting factor (Rpf) is an exoenzyme that cleaves bonds in the peptidoglycan of bacterial cell walls, facilitating dormancy termination and enabling regrowth. Although this family of proteins has been well characterized in model organisms and clinically relevant strains, our study characterizes Rpf from a soil bacterium and examines its effects on resuscitation across a diverse collection of bacteria, linking it to functional traits that may influence dormancy dynamics in both natural and managed ecosystems. 
    more » « less
  2. The underlying factors that lead to specific strains within a species to emerge as human pathogens remain mostly enigmatic. The diarrheal disease cholera is caused by strains from a phylogenetically confined group within theVibrio choleraespecies, the pandemic cholera group (PCG), making it an ideal model system to tackle this puzzling phenomenon. Comprehensive analyses of over 1,840V. choleraegenomes, including environmental isolates from this study, reveal that the species consists of eleven groups, with the PCG belonging to the largest and located within a lineage shared with environmental strains. This hierarchical classification provided us with a framework to unravel the ecoevolutionary dynamics of the genetic determinants associated with the emergence of toxigenicV. cholerae. Our analyses indicate that this phenomenon is largely dependent on the acquisition of unique modular gene clusters and allelic variations that confer a competitive advantage during intestinal colonization. We determined that certain PCG-associated alleles are essential for successful colonization whereas others provide a nonlinear competitive advantage, acting as a critical bottleneck that clarifies the isolated emergence of PCG. For instance, toxigenic strains encoding non-PCG alleles of a)tcpFor b) a sextuple allelic exchange mutant for genestcpA,toxT,VC0176,VC1791,rfbT,andompU, lose their ability to colonize the intestine. Interestingly, these alleles do not play a role in the colonization of newly established model environmental reservoirs. Our study uncovers the evolutionary roots of toxigenicV. choleraeoffering a tractable approach for investigating the emergence of pathogenic clones within an environmental population. 
    more » « less
  3. Fankhauser, Sarah (Ed.)
    ABSTRACT The 2011 reportVision and Change: A Call to Action(V&C) resulted from a national effort to rethink biology curriculum.V&Coutlines core concepts and core competencies for biology undergraduates and promotes evidence-based pedagogy, undergraduate research, and inclusive practices. However, it is unclear how much biology educators know aboutV&Cand what motivates educators’ development of their teaching philosophy and practices. We leveraged the Promoting Active Learning and Mentoring (PALM) Network, a group that introduced evidence-based instructional practices (EBIPs) to instructors through mentoring, journal clubs, and a community of practice, to investigate how muchV&Chas influenced educator knowledge and motivation. Through focus groups, 16 mentors and 22 fellows were asked about their motivations to join PALM, familiarity withV&C, how they learned aboutV&C, and how PALM and/orV&Cshaped the development of their teaching philosophies and strategies. We found that the teaching philosophies and practices of these educators align strongly withV&Cprinciples.V&Cprovided expectancy (established value), while PALM contributed to greater instructor self-efficacy in EBIPs, overall resulting in reformed teaching philosophies and practices. This model highlights the importance of mentorship and community to successfully drive biology education reform. 
    more » « less
  4. Ciliates are a model lineage for studies of genome architecture given their unusual genome structures. All ciliates have both somatic macronuclei (MAC) and germline micronuclei (MIC), both of which develop from a zygotic nucleus following sex (i.e., conjugation). Nuclear developmental stages are not well documented among non-model ciliates, includingChilodonella uncinata(class Phyllopharyngea), the focus of our work. Here, we characterize nuclear architecture and genome dynamics inC. uncinataby combining 4′,6-diamidino-2-phenylindole (DAPI) staining and fluorescencein situhybridization (FISH) techniques with confocal microscopy. We developed a telomere probe for staining, which alongside DAPI allows for the identification of fragmented somatic chromosomes among the total DNA in the nuclei. We quantify both total DNA and telomere-bound signals from more than 250 nuclei sampled from 116 individual cells, and analyze changes in DNA content and nuclear architecture acrossChilodonella’s nuclear life cycle. Specifically, we find that MAC developmental stages in the ciliateC. uncinataare different from those reported from other ciliate species. These data provide insights into nuclear dynamics during development and enrich our understanding of genome evolution in non-model ciliates. IMPORTANCECiliates are a clade of diverse single-celled eukaryotic microorganisms that contain at least one somatic macronucleus (MAC) and germline micronucleus (MIC) within each cell/organism. Ciliates rely on complex genome rearrangements to generate somatic genomes from a zygotic nucleus. However, the development of somatic nuclei has only been documented for a few model ciliate genera, includingParamecium,Tetrahymena, andOxytricha. Here, we study the MAC developmental process in the non-model ciliate,C. uncinata. We analyze both total DNA and the generation of gene-sized somatic chromosomes using a laser scanning confocal microscope to describeC. uncinata’s nuclear life cycle. We show that DNA content changes dramatically during their life cycle and in a manner that differs from previous studies on model ciliates. Our study expands knowledge of genome dynamics in ciliates and among eukaryotes more broadly. 
    more » « less
  5. Kendall, Melissa M (Ed.)
    ABSTRACT Bacteria can change morphology in response to stressors and changes in their environment, including infection of a host. We previously identified the bacterial species,Bordetella atropi, which uses nutrient-induced filamentation as a novel mechanism for cell-to-cell spreading in the intestinal epithelial cells of a nematode host. To further investigate the conservation of nutrient-induced filamentation in Bordetellae, we utilized the turkey-infecting speciesBordetella avium,which filamentsin vitrowhen switched from a standard growth media to an enriched media. We conducted a selection-based filamentation screen withB. aviumand isolated two independent non-filamentous mutants that failed to filament in highly enriched media. These mutants contained different alleles inbvgS,the sensor in the two-component master virulence regulator (BvgAS) conserved across theBordetellagenus. To investigate the role ofbvgSin nutrient-induced filamentation, we conducted transcriptomics and found that our allele ofbvgSresulted in loss of responsiveness to highly enriched media, especially in genes related to nutrient uptake and metabolism. The most dysregulated gene in thebvgSmutant encoded for succinyl-CoA:acetate CoA-transferase, and we were able to regulate filamentation with exogenous metabolites up and downstream of this enzyme. These data suggest thatbvgSregulates nutrient-induced filamentation by controlling metabolic capacity. Overall, we found that the virulence regulatorbvgScan control nutrient-induced filamentation inB. avium,suggesting there may be conservation in Bordetellae for utilizing this morphological change as a virulence phenotype.IMPORTANCEBordetella aviumis the causative agent of bordetellosis, an infectious disease affecting the respiratory system of birds, significantly increasing morbidity in poultry, ultimately leading to economic losses. It is long known that the pathogenesis ofB. aviumis governed by the two-component master virulence regulator, BvgAS. However, this regulon has never before been associated with nutrient-induced filamentation. In this study, we identify BvgS to be regulating nutrient-induced filamentation. We also report the first transcriptomics analysis of filamentousB. avium, showing the enzyme succinyl-CoA:acetate CoA-transferase may be involved in a metabolic shift in enriched nutrient conditions leading to filamentation. Our results suggest that virulence inB. aviumis a dynamic relationship, affected by nutrient availability, rather than a simple binary decision. 
    more » « less