skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiresonant Nanolaminate Nanopillar Arrays for Broadband Nonlinear Optics and Enhanced Refractive Index Sensing
Multiresonant nanolaminate nanopillar arrays (NLNPAs) enable broadband second- and third-harmonic generation and enhanced refractive index sensing with superior sensitivity, establishing NLNPAs as a versatile platform for advanced photonic applications.  more » « less
Award ID(s):
2139317
PAR ID:
10661394
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optica Publishing Group
Date Published:
Page Range / eLocation ID:
JPS100_171
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Allocation of leaf phosphorus (P) among different functional fractions represents a crucial adaptive strategy for optimizing P use. However, it remains challenging to monitor the variability in leaf P fractions and, ultimately, to understand P‐use strategies across diverse plant communities.We explored relationships between five leaf P fractions (orthophosphate P, Pi; lipid P, PL; nucleic acid P, PN; metabolite P, PM; and residual P, PR) and 11 leaf economic traits of 58 woody species from three biomes in China, including temperate, subtropical and tropical forests. Then, we developed trait‐based models and spectral models for leaf P fractions and compared their predictive abilities.We found that plants exhibiting conservative strategies increased the proportions of PNand PM, but decreased the proportions of Piand PL, thus enhancing photosynthetic P‐use efficiency, especially under P limitation. Spectral models outperformed trait‐based models in predicting cross‐site leaf P fractions, regardless of concentrations (R2 = 0.50–0.88 vs 0.34–0.74) or proportions (R2 = 0.43–0.70 vs 0.06–0.45).These findings enhance our understanding of leaf P‐allocation strategies and highlight reflectance spectroscopy as a promising alternative for characterizing large‐scale leaf P fractions and plant P‐use strategies, which could ultimately improve the physiological representation of the plant P cycle in land surface models. 
    more » « less
  2. Abstract This Account summarizes efforts in our group toward synthesis of heterocycles in the past decade. Selected examples of transannulative heterocyclizations, intermediate construction of reactive compounds en route to these important motifs, and newer developments of a radical approach are outlined. 1 Introduction 2 Transannulative Heterocyclization 2.1 Rhodium-Catalyzed Transannulative Heterocyclization 2.2 Copper-Catalyzed Transannulative Heterocyclization 3 Synthesis of Heterocycles from Reactive Precursors 3.1 Synthesis of Heterocycles from Diazo Compounds 3.2 Synthesis of Heterocycles from Alkynones 4 Radical Heterocyclization 4.1 Light-Induced Radical Heterocyclization 4.2 Light-Free Radical Heterocyclization 7 Conclusion 
    more » « less
  3. All the names in Paronychia described from South America are investigated. Five names (P. arbuscula, P. brasiliana subsp. brasiliana var. pubescens, P. coquimbensis, P. hieronymi, and P. mandoniana) are lecto- or neotypified on specimens preserved at GOET, K, LP, and P. The typification of nine names, first proposed by Chaudhri in 1968 as the “holotype” are corrected according to Art. 9.10 of ICN. Three second-step typifications (Art. 9.17 of ICN) are proposed for P. camphorosmoides, P. communis, and P. hartwegiana. The following nomenclatural changes are proposed: P. arequipensis comb. et stat. nov. (basionym: P. microphylla subsp. microphylla var. arequepensis), P. compacta nom. nov. pro P. andina (Philippi non Gray; Art. 53.1 of ICN), P. jujuyensis comb. et stat. nov. (basionym: P. hieronymi subsp. hieronymi var. jujuyensis), P. compacta subsp. boliviana comb. nov. (basionym: P. andina subsp. boliviana), and P. compacta subsp. purpurea comb. nov. (basionym: P. andina subsp. purpurea). A new species (P. glabra sp. nov.) is proposed based on our examination of live plants and herbarium specimens. P. johnstonii subsp. johnstonii var. scabrida is synonymized (syn. nov.) with P. johnstonii. Finally, P. argyrocoma subsp. argyrocoma is excluded from South America since it was based on misidentified specimens (deposited at MO) of P. andina subsp. andina. A total of 30 species (43 taxa including subspecies, varieties, subvarieties, and forms) are recognized, highlighting that for some (Paronychia chilensis, P. communis, P. setigera) we provisionally accept Chaudhri’s infraspecific classification, since the high phenotypic variability of these taxa is quite complicated and further investigations need to solve their taxonomy. 
    more » « less
  4. Reaction of ( p -tol 3 P) 2 PtCl 2 and Me 3 Sn(CC) 2 SiMe 3 (1 : 1/THF/reflux) gives monosubstituted trans -Cl( p -tol 3 P) 2 Pt(CC) 2 SiMe 3 (63%), which with wet n -Bu 4 N + F − yields trans -Cl( p -tol 3 P) 2 Pt(CC) 2 H ( 2 , 96%). Hay oxidative homocoupling (O 2 /CuCl/TMEDA) gives all- trans -Cl( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 Cl ( 3 , 68%). Reaction of 3 and Me 3 Sn(CC) 2 SiMe 3 (1 : 1/rt) affords monosubstituted all- trans -Cl( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 (46%), which is converted by a similar desilylation/homocoupling sequence to all- trans -Cl[( p -tol 3 P) 2 Pt(CC) 4 ] 3 Pt(P p -tol 3 ) 2 Cl ( 7 ; 79%). Reaction of ( p -tol 3 P) 2 PtCl 2 and excess H(CC) 2 SiMe 3 (HNEt 2 /cat. CuI) gives trans -Me 3 Si(CC) 2 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 (78%), which with wet n -Bu 4 N + F − affords trans -H(CC) 2 Pt(P p -tol 3 ) 2 (CC) 2 H (96%). Hay oxidative cross coupling with 2 (1 : 4) gives all- trans -Cl[( p -tol 3 P) 2 Pt(CC) 4 ] 2 Pt(P p -tol 3 ) 2 Cl ( 10 , 36%) along with homocoupling product 3 (33%). Reaction of 3 and Me 3 Sn(CC) 2 SiMe 3 (1 : 2/rt) yields all- trans -Me 3 Si(CC) 2 ( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 ( 17 , 77%), which with wet n -Bu 4 N + F − gives all- trans -H(CC) 2 ( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 H (96%). Reaction of 3 and excess Me 3 P gives all- trans -Cl(Me 3 P) 2 Pt(CC) 4 Pt(PMe 3 ) 2 Cl ( 4 , 86%). A model reaction of trans -( p -tol)( p -tol 3 P) 2 PtCl and KSAc yields trans -( p -tol)( p -tol 3 P) 2 PtSAc ( 12 , 75%). Similar reactions of 3 , 7 , 10 , and 4 give all- trans -AcS[(R 3 P) 2 Pt(CC) 4 ] n Pt(PR 3 ) 2 SAc (76–91%). The crystal structures of 3 , 17 , and 12 are determined. The first exhibits a chlorine–chlorine distance of 17.42 Å; those in 10 and 7 are estimated as 30.3 Å and 43.1 Å. 
    more » « less
  5. Phosphorus (P) is critical for crop production but has a high nutrient use inefficiency. Tomato was grown in soil amended with five P-sources, used as-is, or embedded within a biodegradable polymer, polyhydroxyalkanoate (PHA). Correlation analysis identified treatments that maintain plant growth, improve bioavailable soil P, and reduce P loss. Three performance classes were identified: (i) micro- and nanohydroxyapatite, which did not increase bioavailable P, plant P-uptake, or change P in runoff/leaching compared to controls; (ii) monocalcium phosphate (MCP), dicalcium phosphate (DCP), calcium pyrophosphate nanoparticles (CAP), and PHA-MCP that increased P-uptake and/or bioavailable P but also increased P loss in runoff/leaching; and (iii) PHA-DCP and PHA-CAP, where increased bioavailable P and plant P-uptake were achieved with minimal P loss in runoff/leaching. In addition to identifying treatments that maintain plant growth, increase bioavailable P, and minimize nutrient loss, correlation plots also revealed that (i) bioavailable P was a good indicator of plant P-uptake; (ii) leached P could be predicted from water solubility; and (iii) P loss through runoff versus leaching showed similar trends. This study highlights that biopolymers can promote plant P-uptake and improve bioavailable soil P, with implications for mitigating the negative environmental impacts of P loss from agricultural systems. 
    more » « less