skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-scale influences on the fertile island effect: Landscape-scale and patch-level processes drive patterns of soil fertility in the Chihuahuan Desert
Abstract Islands of fertility, patches of locally enhanced soil conditions, play a key role in increasing productivity in dryland regions. The fertile island effect (FIE) influences a range of variables including nutrient availability, soil moisture and microbial activity. While most examinations of the FIE focus on islands created by perennial plants at local scales, the effect may vary across spatial scales and under cover types including shrubs, grasses and biological soil crusts (biocrusts). This study explored differences in the FIE between soil depths across landforms and patch types for biogeochemical factors (nutrient availability) and biotic properties (microbial community structure, extracellular enzymatic activity). The FIE differed across landforms and soil depths, suggesting that soil geomorphology may play a major role in predicting soil fertility. Additionally, the FIE of enzymatic activity and available nutrients varied by patch type consistently across landforms, suggesting patch-scale processes influencing nutrient availability and acquisition are independent of landscape-scale differences. We show that biocrusts can have an FIE similar to that of shrubs and grasses, an underexplored control of variability and productivity in drylands. These findings necessitate further work to improve our understanding of how ecosystem processes vary across scales to influence patterns of productivity and soil fertility.  more » « less
Award ID(s):
2425143
PAR ID:
10661701
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Cambridge Prisms: Drylands
Volume:
2
ISSN:
2976-5293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In the Arctic tundra, warming is anticipated to stimulate nutrient release and potentially alleviate plant nutrient limitations. Typically simulated by fertilization experiments that saturate plant nutrient demand, future increases in soil fertility are thought to favor ectomycorrhizal (EcM) over ericaceous shrubs and have often been identified as a key driver of Arctic shrub expansion. However, the projected increases in fertility will likely vary in their alleviation of nutrient limitations. The resulting responses of shrubs and their mycorrhizae across the gradient of nutrient limitation may be nonlinear and could contradict the current predictions of tundra vegetation shifts. We compared the functional responses of two dominant shrubs, EcM dwarf birch (Betula nana) and ericaceous Labrador tea (Rhododendron tomentosum), across a long‐term nitrogen and phosphorus fertilization gradient experiment in Arctic Alaska. Using linear mixed‐effects modeling, we tested the responses of shrub cover, height, and root enzyme activities to soil fertility. We found thatB. nanacover and height linearly increased with soil fertility. In contrast,R. tomentosumcover initially increased, but decreased after surpassing the intermediate levels of increased soil fertility. Its height did not change. Enzyme activity did not respond to soil fertility on EcM‐colonizedB. nanaroots, but sharply declined onR. tomentosumroots. Overall, the nonlinear responses of shrubs to our fertility gradient demonstrate the importance of experiments grounded in replicated regression design. Our results indicate that under moderate increases in soil fertility, Arctic shrub expansion may not only include deciduous EcM shrubs but also ericaceous shrubs. Regardless of shifts aboveground, changes in root enzyme activity belowground point to some EcM shrub species playing a more influential role in tundra soils; as EcM roots remained steady in their liberation of soil organic nutrients with heightened soil fertility, degradative root enzyme activity on the dominant ericaceous shrub dropped—in some instances with even the slightest increase in fertility. 
    more » « less
  2. This dataset contains physical soil characteristics, PLFA based microbial community composition, extracellular enzymatic activity, nitrate and ammonium activity, and phosphorus availability in various phosphorus pools (Biologically Based Phosphorus, potassium sulfate, Olsen-P). Soils were collected from two depths (0-2cm, 2-30 cm), four microhabitats (grass, shrub, biocrust, interspace), and four landforms (alluvial flat, alluvial fan remnant, erosional scarplet, fan piedmont – see coordinates) within the Jornada Experimental Range in July 2021 to answer questions about how these variables change across these spatial scales in drylands. This project was a collaboration between researchers at New Mexico State University and The University of Texas at El Paso as part of the Drylands Critical Zone Thematic Cluster within the Critical Zone Network. This dataset is complete. 
    more » « less
  3. This review presents current knowledge on applying bioelectrochemical sensors to monitor soil fertility through microbial activity and discusses future perspectives. Soil microbial activity is considered an indicator of soil fertility due to the interconnected relationship between soil nutrient composition, microbiome, and plant productivity. Similarities between soils and bioelectrochemical reactors provide the foundation for the design of bioelectrochemical sensors driven by microorganisms enriched as electrochemically active biofilms on polarized electrodes. The biofilm can exchange electrons with electrodes and metabolites with the nearby microbiome to generate electrochemical signals that inform of microbiome functions and nutrient bioavailability. Such mechanisms can be used as a bioelectrochemical sensor for proxy monitoring of soil fertility to address the need for real-time monitoring of soils. 
    more » « less
  4. Primary production is the fundamental source of energy to foodwebs and ecosystems, and is thus an important constraint on soil communities. This coupling is particularly evident in polar terrestrial ecosystems where biological diversity and activity is tightly constrained by edaphic gradients of productivity (e.g., soil moisture, organic carbon availability) and geochemical severity (e.g., pH, electrical conductivity). In the McMurdo Dry Valleys of Antarctica, environmental gradients determine numerous properties of soil communities and yet relatively few estimates of gross or net primary productivity (GPP, NPP) exist for this region. Here we describe a survey utilizing pulse amplitude modulation (PAM) fluorometry to estimate rates of GPP across a broad environmental gradient along with belowground microbial diversity and decomposition. PAM estimates of GPP ranged from an average of 0.27 μmol O 2 /m 2 /s in the most arid soils to an average of 6.97 μmol O 2 /m 2 /s in the most productive soils, the latter equivalent to 217 g C/m 2 /y in annual NPP assuming a 60 day growing season. A diversity index of four carbon-acquiring enzyme activities also increased with soil productivity, suggesting that the diversity of organic substrates in mesic environments may be an additional driver of microbial diversity. Overall, soil productivity was a stronger predictor of microbial diversity and enzymatic activity than any estimate of geochemical severity. These results highlight the fundamental role of environmental gradients to control community diversity and the dynamics of ecosystem-scale carbon pools in arid systems. 
    more » « less
  5. {"Abstract":["Interactions between plants and soil microbes influence plant\n nutrient transformations, including nitrogen (N) fixation, nutrient\n mineralization, and resource exchanges through fungal networks.\n Physical disturbances to soils can disrupt soil microbes and\n associated processes that support plant and microbial productivity.\n In low resource drylands, biological soil crusts\n ("biocrusts") occupy surface soils and house key\n autotrophic and diazotrophic bacteria, non-vascular plants, or\n lichens. Interactions among biocrusts, plants, and fungal networks\n between them are hypothesized to drive carbon and nutrient dynamics;\n however, comparisons across ecosystems are needed to generalize how\n soil disturbances alter microbial communities and their\n contributions to N pools and transformations. To evaluate linkages\n among plants, fungi, and biocrusts, we disturbed all unvegetated\n surfaces with human foot trampling twice yearly in dry conditions\n from 2013-2018 in cyanobacteria-dominated biocrusts in Chihuahuan\n Desert grassland and shrubland ecosystems. Our study included\n microbial communities and N pools sampled at different time points\n in the disturbance treatments at one or both sites. We began our\n sampling after observations in April 2018 that the chlorophyll a\n content was at least double in control than disturbed plots in both\n ecosystems (Chung et al. 2019). Stomping occurred in May, and we\n collected soil and plant samples in June 2018 for N pools and soil\n and root fungal abundance. We collected additional soil samples in\n September 2018 and conducted the 15N tracer experiment to observe\n rates of N transfer from biocrust to plants before the fall stomp\n treatment in October. We collected chlorophyll a samples and soils\n for sequencing bacteria in September of 2019, also before the fall\n stomp treatment."]} 
    more » « less