skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phase 3: Two-Story Building With Buckling-Restrained Braces, in Advancing Knowledge on the Performance of Seismic Collectors in Steel Building Structures: Shake Table Tests
Phase 3 incorporated Buckling-Restrained Braced Frames (BRBFs) into the two-story test building to evaluate collector behavior in the presence of a yielding seismic-force-resisting system. Conventional earthquake simulation was used with scaled ground motions from the 1994 Northridge Earthquake (Beverly Hills-14145 Mulhol.) at 50%, 100%, 150%, and 200% Design Earthquake (DE) levels, including sign-reversed motions. White-noise and impulse tests were used to identify and track dynamic properties. This phase enabled assessment of collector axial force, slab participation, and connection rotation under system-level interaction with brace yielding and load redistribution. For Phase 3, Buckling-Restrained Braced Frames (BRBFs) were added to the same two-story building used in Phases 2. The diaphragm, collector, and connection details remained the same. This specimen was used to evaluate collector behavior in a yielding structural system, including the interaction between diaphragm inertial forces, brace yielding, and load redistribution. Earthquake events consisted of acceleration time histories based on the 1994 Northridge Earthquake record (Beverly Hills-14145 Mulhol.), scaled to different Design Earthquake (DE) intensity levels. Motions were applied in both direct and sign-reversed directions. These events were used to evaluate collector forces, slab participation, inter-story drift, and connection behavior under increasing levels of seismic demand.  more » « less
Award ID(s):
1662816
PAR ID:
10661877
Author(s) / Creator(s):
; ;
Publisher / Repository:
Designsafe-CI
Date Published:
Edition / Version:
1
Subject(s) / Keyword(s):
Collectors seismic collectors collector connections floor diaphragms composite slab steel buildings shake table testing floor acceleration simulation inertial force NHERI@UC San Diego Large High Performance Outdoor Shake Table (LHPOST)
Format(s):
Medium: X
Institution:
UCSD, University of Arizona
Sponsoring Org:
National Science Foundation
More Like this
  1. Phase 2A used a two-story steel test building with a composite-slab second floor and a bare-steel roof deck. Added weight was applied only at the second floor. Conventional earthquake simulation was used with scaled ground motions from the 1994 Northridge Earthquake (Beverly Hills-14145 Mulhol.) at 50%, 100%, and 200% Design Earthquake (DE) levels, including sign-reversed motions. White-noise and impulse tests were used to identify dynamic properties. In this phase, the second-floor collectors experienced significant axial forces from diaphragm inertial loading, while the roof collectors were mainly subjected to flexural demands due to negligible roof mass. The Phase 2A specimen was a two-story steel building constructed by adding a second story onto the existing Phase 1 test building. It had a composite-slab second floor, a bare-steel roof deck, and perimeter collectors at both levels. Added mass was installed only at the second floor to generate diaphragm inertial forces during the earthquake-simulation tests. This configuration allowed evaluation of collector behavior when significant axial force developed primarily in the second-floor collectors, while the roof collectors experienced mainly flexural demand associated with story drift. 
    more » « less
  2. Phase 2B used the same two-story configuration as 2A, but added weight at both the second floor and roof to increase diaphragm inertial forces. Testing again used scaled Northridge motions (Beverly Hills-14145 Mulhol.) at 50%, 100%, and 125% DE levels, including sign-reversed and repeat motions, with white-noise and impulse tests used to track system properties. In this phase, both the roof and second-floor collectors developed substantial axial forces in addition to flexural demands from story drift, allowing evaluation of collector-to-column connections under combined axial–flexural loading The Phase 2B specimen had the same structural configuration and collector detailing as Phase 2A, but added mass was installed at both the second floor and roof. This produced diaphragm inertial loading at both levels, leading to combined axial and flexural demands in the collectors and their connections. The Phase 2B specimen allowed direct comparison with Phase 2A to study the influence of mass distribution on collector forces. 
    more » « less
  3. Phase 1 used a single-story steel test building with a composite slab and perimeter collectors to develop and validate a Floor Acceleration Simulation Testing (FAST) methodology intended to reproduce multistory floor accelerations in a single-story test frame. White-noise and impulse tests were used to identify dynamic properties, followed by earthquake simulation tests at 20%, 50%, and 100% Design Earthquake (DE) levels to observe collector axial force, slab participation, and connection rotation. White-noise tests: White-noise excitation was applied at low amplitude to identify the natural frequencies, damping ratios, and stiffness characteristics of the structure. These tests were typically conducted before and after earthquake events to track changes in dynamic properties as damage accumulated. Impulse tests: Single-pulse excitation was applied through the shake table to evaluate the transient dynamic characteristics of the structure and to supplement the system-identification testing performed using white-noise input. Floor Acceleration Simulation Testing (FAST): In FAST, the objective was to reproduce realistic multistory floor acceleration demands in a single-story test building. Target floor-acceleration histories were obtained from nonlinear response-history analyses of a 12-story BRBF prototype building (SDII). A transfer-function approach in the frequency domain was then used to compute the shake-table input motion required for the single-story specimen to generate these target accelerations. This approach allowed the specimen to respond essentially elastically while reproducing the amplitude and frequency content of multistory floor accelerations. Earthquake simulation tests: Earthquake events consisted of acceleration time histories based on the 1994 Northridge Earthquake record (Beverly Hills-14145 Mulhol.), scaled to different Design Earthquake (DE) intensity levels. Motions were applied in both direct and sign-reversed directions. These events were used to evaluate collector forces, slab parti 
    more » « less
  4. Many structural systems are susceptible to soft-story instabilities during earthquakes that are lifethreatening and can lead to damage that is too costly to repair. One way to mitigate damage and reduce the potential for soft-story instability is through the addition of an elastic spine that distributes drifts across the height of a structure. One such system is the strongback braced frame, which replaces one side of a buckling-restrained braced frame with a strongback truss. With the strongback providing vertical continuity, an expanded design space is made available for the arrangement of buckling-restrained braces (BRBs) or other energy-dissipating members. An example of this expanded design space is that a designer could opt to not include BRBs at every story. Methods for proportioning the energy-dissipating resistance in strongback braced frames have been proposed. However, most methods don't allow exploitation of the full design space. The objective of this work is to propose and evaluate a potential method of proportioning energy-dissipating members for arbitrary vertical arrangements within strongback braced frames. For a prototypical building, the BRBs are designed in various configurations using existing methods and with the new method. Nonlinear time history analyses of the resulting designs coupled with a rigid strongback are performed and the results are compared. The impacts of overstrength and P-Δ effects are quantified. The findings support the proposed method of BRB design that enables exploration of the wide design space made available by the strongback. 
    more » « less
  5. Structural engineering is moving towards the design of enhanced performing buildings under earthquake events to improve the resiliency of urban communities. Buckling Restrained Braced Frames (BRBF) have been widely adopted to resist lateral loads. However, typical configurations could be subjected to drift concentration, leading to large story drifts and uneven utilization of the BRBs with building height. Studies have suggested that innovative configurations, such as pivoting or rocking frames, can provide a better distribution of the story drift by delaying or preventing story mechanisms and spreading the energy dissipation to adjacent stories across the building height. These types of bracing configurations utilize as essentially elastic spine, or strongback, to induce a global tilting mode. However, since the spine is designed to remain elastic, additional design considerations are needed to size the elements in strongbacks. This study presents a comparative study between traditional chevron BRBF and strongback BRBF systems for a set of buildings with different heights and tributary areas. Results show that the pivoting and rocking strongback result in reduced the peak story drift with more uniform distribution of drift demands. The cost of these alternatives, per frame, was similar to the chevron BRBF. 
    more » « less