Phase 2A used a two-story steel test building with a composite-slab second floor and a bare-steel roof deck. Added weight was applied only at the second floor. Conventional earthquake simulation was used with scaled ground motions from the 1994 Northridge Earthquake (Beverly Hills-14145 Mulhol.) at 50%, 100%, and 200% Design Earthquake (DE) levels, including sign-reversed motions. White-noise and impulse tests were used to identify dynamic properties. In this phase, the second-floor collectors experienced significant axial forces from diaphragm inertial loading, while the roof collectors were mainly subjected to flexural demands due to negligible roof mass. The Phase 2A specimen was a two-story steel building constructed by adding a second story onto the existing Phase 1 test building. It had a composite-slab second floor, a bare-steel roof deck, and perimeter collectors at both levels. Added mass was installed only at the second floor to generate diaphragm inertial forces during the earthquake-simulation tests. This configuration allowed evaluation of collector behavior when significant axial force developed primarily in the second-floor collectors, while the roof collectors experienced mainly flexural demand associated with story drift.
more »
« less
Predetermined Collector Force and Rotation Histories Tests on TFW, in Advancing Knowledge on the Performance of Seismic Collectors in Steel Building Structures
{"Abstract":["To safely survive an earthquake, and thereby protect its occupants, contents, adjacent property, and passersby, a building structure must transfer the large forces that develop during the earthquake from within the building down to the foundation. Earthquake (lateral) forces are generated by the building weight being accelerated horizontally, and thus most earthquake forces originate in the building's heaviest element, i.e., its floors. A key structural element in the force transfer path to the foundation are collectors, which are either special reinforcement in the floor slab or special beams below the slab, that "collect" the forces in the floor, and transfer them to the primary seismic force-resisting vertical elements (frames, braces, or walls). The loss of collectors or collector connections can be catastrophic, as evidenced by the collapse of the CTV building in the 2011 Christchurch, New Zealand earthquake, which killed 115 people, the largest loss of life in this event, and to some extent the collapse of nine parking garages in the 1994 Northridge, California earthquake. Despite the critical nature of seismic collectors, no research effort, including physical testing, has focused specifically on collectors, and knowledge of their seismic performance is lacking. A challenge in understanding the performance of seismic collectors is the complex nature of the floor system itself, a complicated assemblage of many components of different materials (e.g., steel, metal, and concrete) at different elevations, with multiple purposes and uncertain force paths. Past seismic design methodologies for buildings may have significantly underestimated the collector forces. This lack of knowledge impacts not only new construction but also the assessment and retrofit of existing, especially critical care, facilities in high seismic regions. This condition also applies to older non-seismic compliant steel structures nationwide, where inadequate or non-existent seismic collectors are often a major concern. A better understanding of the performance of steel seismic collectors is needed for safe and economical structures, both in the existing building stock and for new construction. Further, the collector's unique role as the critical link between the floor and the vertical elements provides an opportunity for collectors from trying to "out-strength" the earthquake force to instead serve as an innovative force-limiting element that protects the structure from damage. The goals of this research are to: (1) advance knowledge on the seismic performance, analysis, and design of collectors in steel composite floor systems, and (2) develop new knowledge on the reliable seismic performance and potential benefits of innovative collector concepts that can lead to low-damage structural design. This project will support researchers and graduate students from the University of Arizona, University of California, San Diego, and Lehigh University. The project will benefit from working closely with collaborators who are separately supported, i.e., a researcher and a practitioner in New Zealand and an industry panel of seismic design engineers in the United States. An outreach program will be conducted by the University of Arizona with local K-8 schools identified demographically as possessing student bodies of predominately underrepresented groups. The outreach program will target third, fourth, and eighth grade students to include: (1) slides shows and question and answer sessions on earthquake engineering, (2) career mentoring from graduate and undergraduate students, and (3) hands-on science and math activities.\n\nIn this project, an integrated research program will investigate the performance of seismic collectors for steel composite deck structures using the experimental and computational simulation capabilities afforded by the NSF-supported Natural Hazards Engineering Research Infrastructure (NHERI). The research will involve: (1) large-scale testing of collector elements in a steel composite floor system at the NHERI experimental facility at Lehigh University, (2) shake table testing of a 0.4-scale, single-story, steel composite floor system at the NHERI shake table facility at the University of California, San Diego, and (3) nonlinear analysis of steel structure collector elements, details and surrounding regions under seismic effects, and earthquake simulations of steel buildings under strong earthquakes. The planned experiments on steel collectors, with realistic boundary conditions and inertial forces, will be the first of its kind. New data products and calibrated numerical models will be produced from large-scale physical testing. Analytical models will be developed for the collectors and the collector inertial force paths. Transfer of research results into practice will include: (1) new concepts for low-damage structural design, (2) research-based design recommendations, and (3) assessment and retrofit guidelines."]}
more »
« less
- Award ID(s):
- 1662816
- PAR ID:
- 10661911
- Publisher / Repository:
- Designsafe-CI
- Date Published:
- Edition / Version:
- 1
- Subject(s) / Keyword(s):
- Seismic Collector Cyclic collector force rotation collector connection all flange weld (AFW) large scale
- Format(s):
- Medium: X
- Institution:
- Lehigh University/University of Arizona
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This project will develop a new structural system that will protect buildings, their contents, and occupants during large earthquakes and will enable immediate post-earthquake occupancy. This earthquake-resilient structural system will be particularly valuable for essential facilities, such as hospitals, where damage to buildings and contents and occupant injuries must be prevented and where continuous occupancy performance is imperative. The new system will use practical structural components to economically protect a building from damaging displacements and accelerations. The project team will collaborate with Japanese researchers to study the new system with full-scale earthquake simulations using the 3D Full-Scale Earthquake Testing Facility (E-Defense) located in Miki, Japan, and operated by the National Research Institute for Earth Science and Disaster Resilience. This project will advance national health, prosperity, and welfare by preventing injuries and loss of human life and minimizing social and economic disruption of buildings due to large earthquakes. An online course on resilient seismic design will be developed and offered through the American Institute of Steel Construction night school program, which will be of interest to practicing engineers, researchers, and students across the country. This project contributes to NSF's role in the National Earthquake Hazards Reduction Program. The novel steel frame-spine lateral force-resisting system with force-limiting connections (FLC) that will be developed in this project will control multi-modal seismic response to protect a building and provide resilient structural and non-structural building performance. This frame-spine-FLC system will rely on a conventional, economical base system that resists a significant proportion of the lateral load. The system judiciously employs floor-level force-limiting deformable connections and an elastic spine to protect the base system. Integrated experiments and numerical simulations will provide comprehensive understanding of the new frame-spine-FLC system, including rich full-scale experimental data on building seismic performance with combined in-plane, out-of-plane, and torsional response under 3D excitation. The FLCs will be tested using the NHERI facility at Lehigh University. This project will be conducted in collaboration with an ongoing synergistic research program in Japan. The extensive dataset from this integrated U.S.-Japan research program will enable unique comparisons of structural and non-structural performance, including critical acceleration-sensitive hospital contents that directly affect the health and safety of patients. In addition, the dataset will enable the advancement of computational modeling for the assessment of building performance and the development of practical, accurate models for use in design that capture the complex 3D structural response that occurs during an earthquake.more » « less
-
This project will develop a new structural system that will protect buildings, their contents, and occupants during large earthquakes and will enable immediate post-earthquake occupancy. This earthquake-resilient structural system will be particularly valuable for essential facilities, such as hospitals, where damage to buildings and contents and occupant injuries must be prevented and where continuous occupancy performance is imperative. The new system will use practical structural components to economically protect a building from damaging displacements and accelerations. The project team will collaborate with Japanese researchers to study the new system with full-scale earthquake simulations using the 3D Full-Scale Earthquake Testing Facility (E-Defense) located in Miki, Japan, and operated by the National Research Institute for Earth Science and Disaster Resilience. This project will advance national health, prosperity, and welfare by preventing injuries and loss of human life and minimizing social and economic disruption of buildings due to large earthquakes. An online course on resilient seismic design will be developed and offered through the American Institute of Steel Construction night school program, which will be of interest to practicing engineers, researchers, and students across the country. This project contributes to NSF's role in the National Earthquake Hazards Reduction Program. The novel steel frame-spine lateral force-resisting system with force-limiting connections (FLC) that will be developed in this project will control multi-modal seismic response to protect a building and provide resilient structural and non-structural building performance. This frame-spine-FLC system will rely on a conventional, economical base system that resists a significant proportion of the lateral load. The system judiciously employs floor-level force-limiting deformable connections and an elastic spine to protect the base system. Integrated experiments and numerical simulations will provide comprehensive understanding of the new frame-spine-FLC system, including rich full-scale experimental data on building seismic performance with combined in-plane, out-of-plane, and torsional response under 3D excitation. The FLCs will be tested using the NHERI facility at Lehigh University. This project will be conducted in collaboration with an ongoing synergistic research program in Japan. The extensive dataset from this integrated U.S.-Japan research program will enable unique comparisons of structural and non-structural performance, including critical acceleration-sensitive hospital contents that directly affect the health and safety of patients. In addition, the dataset will enable the advancement of computational modeling for the assessment of building performance and the development of practical, accurate models for use in design that capture the complex 3D structural response that occurs during an earthquake.more » « less
-
Phase 1 used a single-story steel test building with a composite slab and perimeter collectors to develop and validate a Floor Acceleration Simulation Testing (FAST) methodology intended to reproduce multistory floor accelerations in a single-story test frame. White-noise and impulse tests were used to identify dynamic properties, followed by earthquake simulation tests at 20%, 50%, and 100% Design Earthquake (DE) levels to observe collector axial force, slab participation, and connection rotation. White-noise tests: White-noise excitation was applied at low amplitude to identify the natural frequencies, damping ratios, and stiffness characteristics of the structure. These tests were typically conducted before and after earthquake events to track changes in dynamic properties as damage accumulated. Impulse tests: Single-pulse excitation was applied through the shake table to evaluate the transient dynamic characteristics of the structure and to supplement the system-identification testing performed using white-noise input. Floor Acceleration Simulation Testing (FAST): In FAST, the objective was to reproduce realistic multistory floor acceleration demands in a single-story test building. Target floor-acceleration histories were obtained from nonlinear response-history analyses of a 12-story BRBF prototype building (SDII). A transfer-function approach in the frequency domain was then used to compute the shake-table input motion required for the single-story specimen to generate these target accelerations. This approach allowed the specimen to respond essentially elastically while reproducing the amplitude and frequency content of multistory floor accelerations. Earthquake simulation tests: Earthquake events consisted of acceleration time histories based on the 1994 Northridge Earthquake record (Beverly Hills-14145 Mulhol.), scaled to different Design Earthquake (DE) intensity levels. Motions were applied in both direct and sign-reversed directions. These events were used to evaluate collector forces, slab partimore » « less
-
A full-scale, six-story, mass timber building including Mass Ply Panel (MPP) self-centering rocking walls with Buckling-Restrained Boundary Elements (BRBs) was tested at the Large High-Performance Outdoor Shake Table (LHPOST6) at the University of California, San Diego (UCSD). Measured sensor and derived data included global responses, such as floor displacements and accelerations, along with local responses, such as post-tensioning (PT) forces and uplift displacements, among others. The three-dimensional shake table testing program included 23 ground motion records with intensities of shaking ranging from Service (SLE) up to Risk-Targeted Maximum Considered Earthquake (MCER) levels. Results highlighted that: [i] the drift response was near uniform along the height of the building, [ii] the acceleration response included large contributions from the higher modes, [iii] the PT rods remained elastic and had stable post-tensioning force throughout the test program, and [iv] the self-centering system resulted in negligible residual drifts. Qualitative observations from construction and testing were also cataloged to further support the feasibility of implementation in practice. By combining steel BRBs and post-tensioning rods with MPP rocking elements, the system was able to meet the enhanced seismic performance goals targeted for the project. Future work will seek to define both resilience and sustainability targets for designs incorporating multiple performance objectives.more » « less
An official website of the United States government
