Reform documents advocate for innovative pedagogical strategies to enhance student learning. A key innovation is the integration of science and engineering practices through engineering design (ED)-based physics laboratory tasks, where students tackle engineering design problems by applying physics principles. While this approach has its benefits, research shows that students do not always effectively apply scientific concepts, but instead rely on trial-and-error approaches, and end up their way to a solution. This leads to what is commonly referred to as the —that students do not always consciously apply science concepts while solving a design problem. However, as obvious as the notion of a may appear, there seems to exist no consensus on the definitions of and , further complicating the understanding of this gap. This qualitative study addresses the notion of the design-science gap by examining student groups’ discussions and written lab reports from a multiweek ED-based undergraduate introductory physics laboratory task. Building on our earlier studies, we developed and employed a nuanced, multilayered coding scheme inspired by the Gioia Framework to characterize and . We discuss how student groups engage in various aspects of design and how they apply physics concepts and principles to solve the problem. In the process, we demonstrate the interconnectedness of students’ design thinking and science thinking. We advocate for the usage of the term as opposed to to deepen both design and science thinking. Our findings offer valuable insights for educators in design-based science education.
more »
« less
Presenting a STEM Ways of Thinking framework for engineering design-based physics problems
Investigating students’ thinking in classroom tasks, particularly in science and engineering, is essential for improving educational practices and advancing student learning. In this context, the notion of (WoT) has gained traction in STEM education, offering a framework to explore how students approach and solve interdisciplinary problems. Building on our earlier studies and contributing to ongoing discussions on WoT frameworks, this paper introduces a new WoT framework—Ways of Thinking in Engineering Design-based Physics (WoT4EDP). WoT4EDP integrates five key elements—design, science, mathematics, metacognitive reflection, and computational thinking—within an undergraduate introductory physics laboratory. This novel framework highlights how these interconnected elements foster deeper learning and holistic problem solving in ED-based projects. A key takeaway is that this framework serves as a practical tool for educators and researchers to design, implement, and analyze interdisciplinary STEM activities in physics classrooms. We describe the development of WoT4EDP, situate it within undergraduate STEM education, and characterize its components in detail. Additionally, we compare WoT4EDP with two contemporary frameworks—Dalal (2021) and English (2023)—to glean insights that enhance its application and promote interdisciplinary thinking. This paper is the first of a two-part series. In the upcoming second part, we will demonstrate the application of the WoT4EDP framework, showcasing how it can be used to analyze student thinking in real-world, ED-based physics projects.
more »
« less
- Award ID(s):
- 2021389
- PAR ID:
- 10662154
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Physics Education Research
- Volume:
- 21
- Issue:
- 1
- ISSN:
- 2469-9896
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Data Science plays a vital role in sciences and engineering disciplines to discover meaningful information and predict the outcome of real-world problems. Despite the significance of this field and high demand, knowledge of how to effectively provide data science research experience to STEM students is scarce. This paper focuses on the role of data science and analytics education to improve the students' computing and analytical skills across a range of domain-specific problems. The paper studies four examples of data-intensive STEM projects for supervised undergraduate research experiences (SURE) in Mechanical Engineering, Biomedical science, Quantum Physics, and Cybersecurity. The developed projects include the applications of data science for improving additive manufacturing, automating microscopy images analysis, identifying the quantum optical modes, and detecting network intrusion. The paper aims to provide some guidelines to effectively educate the next generation of STEM undergraduate and graduate students and prepare STEM professionals with interdisciplinary knowledge, skills, and competencies in data science. The paper includes a summary of activities and outcomes from our research and education in the field of data science and machine learning. We will evaluate the student learning outcomes in solving big data interdisciplinary projects to confront the new challenges in a computationally-driven world.more » « less
-
Data Science plays a vital role in sciences and engineering disciplines to discover meaningful information and predict the outcome of real-world problems. Despite the significance of this field and high demand, knowledge of how to effectively provide data science research experience to STEM students is scarce. This paper focuses on the role of data science and analytics education to improve the students' computing and analytical skills across a range of domain-specific problems. The paper studies four examples of data-intensive STEM projects for supervised undergraduate research experiences (SURE) in Mechanical Engineering, Biomedical science, Quantum Physics, and Cybersecurity. The developed projects include the applications of data science for improving additive manufacturing, automating microscopy image analysis, identifying the quantum optical modes, and detecting network intrusion. The paper aims to provide some guidelines to effectively educate the next generation of STEM undergraduate and graduate students and prepare STEM professionals with interdisciplinary knowledge, skills, and competencies in data science. The paper includes a summary of activities and outcomes from our research and education in the field of data science and machine learning. We will evaluate the student learning outcomes in solving big data interdisciplinary projects to confront the new challenges in a computationally-driven world.more » « less
-
This study explores synergies of a holistic, interdisciplinary National Science Foundation - National Research Traineeship (NSF-NRT) Program that leverages a Foundry-guided approach5 to foster integrative thinking and problem-solving skills among and between students.6 Specifically, we look at selected outcomes from a course that is required as part of the first-year experience for student trainees participating in this program. As part of this work-in-progress, we offer insight into students’ growth in specific areas related to interdisciplinary communication. The preliminary findings reveal that students are developing skills related to a deeper understanding of real-world applications through interdisciplinary collaboration and that holistic approaches in engineering education can improve student outcomes. Implications and lessons learned are connected to key areas relevant to the Engineering Unleashed framework.more » « less
-
As part of the General Education (GenEd) program at the Pennsylvania State University, we offer an experimental course on flow visualization to undergraduate students. This course aims to bridge the gap between two distinct areas of knowledge: the art and science of fluid mechanics. Designed for students with minimal to no background in photography or physics, this nonmathematical course provides an opportunity for students to explore a variety of aesthetic issues through practical and creative assignments. The course consists of lectures on photography skills, fluid physics, visualization techniques, critique sessions, and a guest lecture. Assignments consist of images paired with written technical reports, and critique sessions. The primary objective of the course is "integrative thinking". Other course objectives evaluated through students’ assignments and projects are "creative thinking" and “effective communication”. Some samples of student work are presented, and the outcomes are discussed. This course proved to be very successful in attracting all students (male and female) in both engineering and non-engineering majors.more » « less
An official website of the United States government

