skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A droplet digital PCR assay to measure pilin antigenic variation frequency in Neisseria gonorrhoeae
ABSTRACT The strict human pathogenNeisseria gonorrhoeae(gonococcus [Gc]) infects an estimated 82 million individuals globally and is a World Health Organization-designated bacterial pathogen of public health importance due to escalating antimicrobial resistance. Gc vaccines have been hindered by Gc’s ability to evade immune surveillance in part by varying its major surface antigens like the type IV pilus. We developed a quick and precise method for measuring pilin antigenic variation (Av) frequency using droplet digital PCR (ddPCR) technology. Two fluorescent probes were designed to detect either the hypervariable tail region of silent pilin locuspilS3-copy 1 (S3C1) or a sequence conserved in allpilEvariants (CYS2). The appropriate frequency of pilin antigenic variation is measured by the proportion ofpilEamplicons carrying the recombinant S3C1 copy relative to the total pilE amplicons measured by CYS2. The ddPCR assay is specific for RecA-dependent pilin antigenic variation. The reduced frequency of pilin Av in strains lacking RecA-modulating recombination protein RecX and the DNA helicase RecQ confirms the ability of the assay to measure changes in pilin Av frequency. We used the ddPCR assay to determine that pilin Av frequency is altered by the colony densities on a solid medium. The ddPCR assay is an accurate, efficient way to measure Gc pilin Av frequency. IMPORTANCEGonorrhea is a sexually transmitted infectious disease of the human genital and nasopharyngeal mucosa caused by the host-restricted bacteriumNeisseria gonorrhoeae. The rise of antibiotic-resistant gonorrhea is an urgent global threat to public health. Pilus antigenic variation is a gene conversion process that allowsN. gonorrhoeaeto evade host immune surveillance, and a mechanistic understanding of this process is crucial to understandingN. gonorrhoeaepathogenesis. This report shows that we can adopt a digital PCR methodology to quickly and accurately measure pilin antigenic variation.  more » « less
Award ID(s):
2239567
PAR ID:
10662157
Author(s) / Creator(s):
; ; ; ;
Editor(s):
D'Orazio, Sarah_E F
Publisher / Repository:
mSphere
Date Published:
Journal Name:
mSphere
Volume:
10
Issue:
5
ISSN:
2379-5042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The obligate human pathogen Neisseria gonorrhoeae alters its cell surface antigens to evade the immune system in a process known as antigenic variation (AV). During pilin AV, portions of the expressed pilin gene ( pilE ) are replaced with segments of silent pilin genes ( pilS ) through homologous recombination. The pilE-pilS exchange is initiated by formation of a parallel guanine quadruplex (G4) structure near the pilE gene, which recruits the homologous recombination machinery. The RecQ helicase, which has been proposed to aid AV by unwinding the pilE G4 structure, is an important component of this machinery. However, RecQ also promotes homologous recombination through G4-independent duplex DNA unwinding, leaving the relative importance of its G4 unwinding activity unclear. Previous investigations revealed a guanine-specific pocket (GSP) on the surface of RecQ that is required for G4, but not duplex, DNA unwinding. To determine whether RecQ-mediated G4 resolution is required for AV, N. gonorrhoeae strains that encode a RecQ GSP variant that cannot unwind G4 DNA were created. In contrast to the hypothesis that G4 unwinding by RecQ is important for AV, the RecQ GSP variant N. gonorrhoeae strains had normal AV levels. Analysis of a purified RecQ GSP variant confirmed that it retained duplex DNA unwinding activity but had lost its ability to unwind antiparallel G4 DNA. Interestingly, neither the GSP-deficient RecQ variant nor the wild-type RecQ could unwind the parallel pilE G4 nor the prototypical c- myc G4. Based on these results, we conclude that N. gonorrhoeae AV occurs independently of RecQ-mediated pilE G4 resolution. IMPORTANCE The pathogenic bacteria Neisseria gonorrhoeae avoids clearance by the immune system through antigenic variation (AV), the process by which immunogenic surface features of the bacteria are exchanged for novel variants. RecQ helicase is critical in AV and its role has been proposed to stem from its ability to unwind a DNA secondary structure known as a guanine quadruplex (G4) that is central to AV. In this work, we demonstrate that the role of RecQ in AV is independent of its ability to resolve G4s and that RecQ is incapable of unwinding the G4 in question. We propose a new model of RecQ’s role in AV where the G4 might recruit or orient RecQ to facilitate homologous recombination. 
    more » « less
  2. Pathogenic Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea. N. gonorrhoeae has evolved high levels of antimicrobial resistance (AR) leading to therapeutic failures even in dual-therapy treatment with azithromycin and ceftriaxone. AR mechanisms can be acquired by genetic transfer from closely related species, such as naturally competent commensal Neisseria species. At present, little is known about the antimicrobial resistance profiles of commensal Neisseria. Here, we characterized the phenotypic resistance profile of four commensal Neisseria species (N. lactamica, N. cinerea, N. mucosa, and N. elongata) against 10 commonly used antibiotics, and compared their profiles to 4 N. gonorrhoeae strains, using disk diffusion and minimal inhibitory concentration assays. Overall, we observed that 3 of the 4 commensals were more resistant to several antibiotics than pathogenic N. gonorrhoeae strains. Next, we compared publicly available protein sequences of known AR genes, including penicillin-binding-protein 2 (PBP2) from commensals and N. gonorrhoeae strains. We found mutations in PBP2 known to confer resistance in N. gonorrhoeae also present in commensal Neisseria sequences. Our results suggest that commensal Neisseria have unexplored antibiotic resistance gene pools that may be exchanged with pathogenic N. gonorrhoeae, possibly impairing drug development and clinical treatment. 
    more » « less
  3. null (Ed.)
    Abstract Background Wastewater-based epidemiology (WBE) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be an important source of information for coronavirus disease 2019 (COVID-19) management during and after the pandemic. Currently, governments and transportation industries around the world are developing strategies to minimize SARS-CoV-2 transmission associated with resuming activity. This study investigated the possible use of SARS-CoV-2 RNA wastewater surveillance from airline and cruise ship sanitation systems and its potential use as a COVID-19 public health management tool. Methods Aircraft and cruise ship wastewater samples (n = 21) were tested for SARS-CoV-2 using two virus concentration methods, adsorption–extraction by electronegative membrane (n = 13) and ultrafiltration by Amicon (n = 8), and five assays using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and RT-droplet digital PCR (RT-ddPCR). Representative qPCR amplicons from positive samples were sequenced to confirm assay specificity. Results SARS-CoV-2 RNA was detected in samples from both aircraft and cruise ship wastewater; however concentrations were near the assay limit of detection. The analysis of multiple replicate samples and use of multiple RT-qPCR and/or RT-ddPCR assays increased detection sensitivity and minimized false-negative results. Representative qPCR amplicons were confirmed for the correct PCR product by sequencing. However, differences in sensitivity were observed among molecular assays and concentration methods. Conclusions The study indicates that surveillance of wastewater from large transport vessels with their own sanitation systems has potential as a complementary data source to prioritize clinical testing and contact tracing among disembarking passengers. Importantly, sampling methods and molecular assays must be further optimized to maximize detection sensitivity. The potential for false negatives by both wastewater testing and clinical swab testing suggests that the two strategies could be employed together to maximize the probability of detecting SARS-CoV-2 infections amongst passengers. 
    more » « less
  4. Roux, Simon (Ed.)
    ABSTRACT We isolated seven endospore-forming bacteria from campus woodland and sequenced their genomes using Illumina NextSeq. We share the draft genome assemblies for strainsBacillus wiedmanii_SC129,Bacillus pseudomycoides_SC131,Bacillus pumilis_SC133,Peribacillus butanolivorans_SC135,Bacillus thuringiensis_SC136,Priestia megaterium_SC138, andBacillus wiedmanii_SC141. Draft genome sizes range from 3,645,032 to 5,969,865 bp, with GC content between 34.8% and 41.2%. 
    more » « less
  5. Goldman, Gustavo H (Ed.)
    ABSTRACT Fungal infections are difficult to prevent and treat in large part due to strain heterogeneity, which confounds diagnostic predictability. Yet, the genetic mechanisms driving strain-to-strain variation remain poorly understood. Here, we determined the extent to whichStarships—giant transposons capable of mobilizing numerous fungal genes—generate genetic and phenotypic variability in the opportunistic human pathogenAspergillus fumigatus. We analyzed 519 diverse strains, including 11 newly sequenced with long-read technology and multiple isolates of the same reference strain, to reveal 20 distinctStarshipsthat are generating genomic heterogeneity over timescales relevant for experimental reproducibility.Starship-mobilized genes encode diverse functions, including known biofilm-related virulence factors and biosynthetic gene clusters, and many are differentially expressed during infection and antifungal exposure in a strain-specific manner. These findings support a new model of fungal evolution whereinStarshipshelp generate variation in genome structure, gene content, and expression among fungal strains. Together, our results demonstrate thatStarshipsare a previously hidden mechanism generating genotypic and, in turn, phenotypic heterogeneity in a major human fungal pathogen.IMPORTANCENo “one size fits all” option exists for treating fungal infections in large part due to genetic and phenotypic variability among strains. Accounting for strain heterogeneity is thus fundamental for developing efficacious treatments and strategies for safeguarding human health. Here, we report significant progress toward achieving this goal by uncovering a previously hidden mechanism generating heterogeneity in the human fungal pathogenAspergillus fumigatus: giant transposons, calledStarships, that span dozens of kilobases and mobilize fungal genes as cargo. By conducting a systematic investigation of these unusual transposons in a single fungal species, we demonstrate their contributions to population-level variation at the genome, pangenome, and transcriptome levels. TheStarshipcompendium we develop will not only help predict variation introduced by these elements in laboratory experiments but will serve as a foundational resource for determining howStarshipsimpact clinically relevant phenotypes, such as antifungal resistance and pathogenicity. 
    more » « less