Microbes are responsible for cycling carbon (C) through soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms assumed to control the microbial physiological response to warming. Two mechanisms have been suggested to explain the long- term warming impact on microbial physiology: microbial thermal acclimation and changes in the quantity and quality of substrates available for microbial metabolism. Yet studies disentangling these two mechanisms are lacking. To resolve the drivers of changes in microbial physiology in response to long- term warming, we sampled soils from 13- and 28- year- old soil warming experiments in different seasons. We performed short- term laboratory incubations across a range of temperatures to measure the relationships between temperature sensitivity of physiology (growth, respiration, carbon use efficiency, and extracellular enzyme activity) and the chemical composition of soil organic matter. We observed apparent thermal acclimation of microbial respiration, but only in summer, when warming had exacerbated the seasonally- induced, already small dissolved organic matter pools. Irrespective of warming, greater quantity and quality of soil carbon increased the extracellular enzymatic pool and its temperature sensitivity. We propose that fresh litter input into the system seasonally cancels apparent thermal acclimation of C- cycling processes to decadal warming. Our findings reveal that long-term warming has indirectly affected microbial physiology via reduced C availability in this system, implying that earth system models including these negative feedbacks may be best suited to describe long- term warming effects on these soils.
more »
« less
Inclusion of Explicit Soil Freeze‐Thaw Dynamics in an Arctic Ecosystem Model Constrains Winter Warming Driven Carbon Loss
Abstract Arctic permafrost soils store vast amounts of carbon (C)‐rich organic matter that has accumulated due to low temperatures that suppress microbial decomposition. As Arctic warming intensifies, soil microbes become increasingly active, even while plant growth remains dormant. Seasonal decoupling between plant and microbial decomposer growth can accelerate carbon dioxide (CO2) release from soils, however, most Earth system models underestimate cold‐season C emissions and do not accurately represent the freeze–thaw transitions that govern microbial access to substrates during these critical periods. These model–data mismatches often stem from empirical formulations, such as using a fixed Q10functions to represent microbial respiration, an oversimplification of a complex interplay of temperature, moisture, and substrate diffusion. To address this, we incorporated explicit, temperature‐dependent diffusional constraints on microbial activity, (the Dual Arrhenius Michaelis–Menten (DAMM) model), into the Stoichiometrically Coupled Acclimating Microbe–Plant–Soil (SCAMPS) model which uses the Q10function to represent microbial respiration. We used this enhanced model (SCAMPS_DAMM) to simulate Arctic ecosystem responses to a 50‐year winter warming scenario and compared outcomes to the original SCAMPS framework. While both models predicted overall soil C losses under warming, SCAMPS_DAMM produced more constrained increases in microbial respiration and plant productivity. These differences led to similar total ecosystem C declines but divergent patterns of C and N allocation between plant and soil pools. Thus, incorporating mechanistic constraints on microbial access to substrates through explicit representation of temperature and moisture controls altered model projections of Arctic biogeochemical responses to climate change.
more »
« less
- Award ID(s):
- 2034323
- PAR ID:
- 10662415
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 131
- Issue:
- 1
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Arctic and alpine tundra ecosystems are large reservoirs of organic carbon1,2. Climate warming may stimulate ecosystem respiration and release carbon into the atmosphere3,4. The magnitude and persistency of this stimulation and the environmental mechanisms that drive its variation remain uncertain5–7. This hampers the accuracy of global land carbon–climate feedback projections7,8. Here we synthesize 136 datasets from 56 open-top chamber in situ warming experiments located at 28 arctic and alpine tundra sites which have been running for less than 1 year up to 25 years. We show that a mean rise of 1.4 °C [confidence interval (CI) 0.9–2.0 °C] in air and 0.4 °C [CI 0.2–0.7 °C] in soil temperature results in an increase in growing season ecosystem respiration by 30% [CI 22–38%] (n = 136). Our findings indicate that the stimulation of ecosystem respiration was due to increases in both plant-related and microbial respiration (n = 9) and continued for at least 25 years (n = 136). The magnitude of the warming effects on respiration was driven by variation in warming-induced changes in local soil conditions, that is, changes in total nitrogen concentration and pH and by context-dependent spatial variation in these conditions, in particular total nitrogen concentration and the carbon:nitrogen ratio. Tundra sites with stronger nitrogen limitations and sites in which warming had stimulated plant and microbial nutrient turnover seemed particularly sensitive in their respiration response to warming. The results highlight the importance of local soil conditions and warming-induced changes therein for future climatic impacts on respiration.more » « less
-
The polar regions are among the most biologically constrained in the world, characterized by cold temperatures and reduced liquid water. These limitations make them among the most climate-sensitive regions on Earth. Despite the overwhelming constraints from low temperatures and resource availability, many polar ecosystems, including polar deserts and tundras across the Arctic and Antarctic host uniquely diverse microbial communities. Polar regions have warmed more rapidly than the global average, with continued warming predicted for the future, which will reduce constraints on soil microbial activity. This could alter polar carbon (C) cycles, increasing CO2 emissions into the atmosphere. The objective of this study was to determine how increased temperature and moisture availability impacts microbial respiration in polar regions, by focusing on a diversity of ecosystem types (polar desert vs. tundra) that are geographically distant across Antarctica and the Arctic. We found that polar desert soil microbes were co-limited by temperature and moisture, though C and nitrogen (N) mineralization were only stimulated at the coldest and driest of the two polar deserts. Only bacterial biomass was impacted at the less harsh of the polar deserts, suggesting microbial activity is limited by factors other than temperature and moisture. Of the tundra sites, only the Antarctic tundra was climate-sensitive, where increased temperature decreased C and N mineralization while water availability stimulated it. The greater availability of soil resources and vegetative biomass at the Arctic tundra site might lead to its lack of climate-sensitivity. Notably, while C and N dynamics were climate-sensitive at some of our polar sites, P availability was not impacted at any of them. Our results demonstrate that soil microbial processes in some polar ecosystems are more sensitive to changes in temperature and moisture than others, with implications for soil C and N storage that are not uniformly predictable across polar regions.more » « less
-
Labile carbon (C) inputs in soils are expected to increase in the future due to global change drivers such as elevated atmospheric CO2 concentrations or warming and potential increases in plant primary productivity. However, the role of mycorrhizal association in modulating microbial activity and soil organic matter (SOM) biogeochemistry responses to increasing below‐ground C inputs remains unclear. We employed 18O–H2O quantitative stable isotope probing to investigate the effects of synthetic root exudate addition (0, 250, 500, and 1000 μg C g soil-1) on bacterial growth traits and SOM biogeochemistry in rhizosphere soils of trees associated with arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi. Soil respiration increased proportionally to the amount of exudate addition in both AM and ECM soils. However, microbial biomass C (MBC) responses differed, increasing in AM and decreasing in ECM soils. In AM soils, exudate addition increased taxon‐specific and community‐wide relative growth rates of bacteria, leading to enhanced biomass production. Conversely, in ECM soils, relative growth rates were less responsive to exudate addition, and estimates of MBC mortality increased with increasing exudate addition. In the AM soils, aggregated bacterial growth traits were predictive of soil respiration, but this relationship was not observed in ECM soils, perhaps due to substantial MBC mortality. These findings highlight the distinct responses of bacterial communities in AM and ECM rhizosphere soils to exudate addition. Considering that microbial products contribute to the formation of stable soil organic carbon (SOC) pools, future increases in labile exudate release in response to global change may consequently lead to greater SOC gains in AM soils compared to ECM soils.more » « less
-
Abstract Environmental changes, such as climate warming and higher herbivory pressure, are altering the carbon balance of Arctic ecosystems; yet, how these drivers modify the carbon balance among different habitats remains uncertain. This hampers our ability to predict changes in the carbon sink strength of tundra ecosystems. We investigated how spring goose grubbing and summer warming—two key environmental‐change drivers in the Arctic—alter CO2fluxes in three tundra habitats varying in soil moisture and plant‐community composition. In a full‐factorial experiment in high‐Arctic Svalbard, we simulated grubbing and warming over two years and determined summer net ecosystem exchange (NEE) alongside its components: gross ecosystem productivity (GEP) and ecosystem respiration (ER). After two years, we found net CO2uptake to be suppressed by both drivers depending on habitat. CO2uptake was reduced by warming in mesic habitats, by warming and grubbing in moist habitats, and by grubbing in wet habitats. In mesic habitats, warming stimulated ER (+75%) more than GEP (+30%), leading to a 7.5‐fold increase in their CO2source strength. In moist habitats, grubbing decreased GEP and ER by ~55%, while warming increased them by ~35%, with no changes in summer‐long NEE. Nevertheless, grubbing offset peak summer CO2uptake and warming led to a twofold increase in late summer CO2source strength. In wet habitats, grubbing reduced GEP (−40%) more than ER (−30%), weakening their CO2sink strength by 70%. One‐year CO2‐flux responses were similar to two‐year responses, and the effect of simulated grubbing was consistent with that of natural grubbing. CO2‐flux rates were positively related to aboveground net primary productivity and temperature. Net ecosystem CO2uptake started occurring above ~70% soil moisture content, primarily due to a decline in ER. Herein, we reveal that key environmental‐change drivers—goose grubbing by decreasing GEP more than ER and warming by enhancing ER more than GEP—consistently suppress net tundra CO2uptake, although their relative strength differs among habitats. By identifying how and where grubbing and higher temperatures alter CO2fluxes across the heterogeneous Arctic landscape, our results have implications for predicting the tundra carbon balance under increasing numbers of geese in a warmer Arctic.more » « less
An official website of the United States government

