Abstract Artificial light at night (ALAN) is an increasingly important form of environmental disturbance as it alters Light:Dark cycles that regulate daily and seasonal changes in physiology and phenology. The Northern house mosquito (Culex pipiens) and the tiger mosquito (Aedes albopictus) enter an overwintering dormancy known as diapause that is cued by short days. These two species differ in diapause strategy:Cx. pipiensdiapause as adult females whileAe. albopictusenter a maternally-programmed, egg diapause. Previous studies found that ALAN inhibits diapause in both species, but the mechanism is unknown. As the circadian clock is implicated in the regulation of diapause in many insects, we examined whether exposure to ALAN altered the daily expression of core circadian cloc genes (cycle,Clock,period,timeless,cryptochrome 1,cryptochrome 2, andPar domain protein 1) in these two species when reared under short-day, diapause-inducing conditions. We found that exposure to ALAN altered the abundance of several clock genes in adult females of both species, but that clock gene rhythmicity was maintained for most genes. ALAN also had little effect on clock gene abundance in mature oocytes that were dissected from femaleAe. albopictusthat were reared under short day conditions. Our findings indicate that ALAN may inhibit diapause initiation through the circadian clock in two medically-important mosquitoes.
more »
« less
Sexually dimorphic and clock gene-specific effects of artificial light at night on Drosophila behavioural rhythms
Light pollution is a major anthropogenic environmental change and a significant threat to ecosystems. Among other detrimental effects on physiology, artificial light at night (ALAN) disrupts circadian rhythms in a wide range of species. However, the underlying neuronal and genetic mechanisms remain poorly understood. Here, we show in Drosophila that the loss of the circadian clock gene period exacerbates the ALAN-induced shift towards nocturnal behaviour, with a more pronounced effect on males. In contrast, the loss of cycle has no such effect on males or females; cyc null mutants are nocturnal under standard light‒dark cycles, and their activity and sleep profiles are minimally or not affected by ALAN exposure. CRISPR-Cas9 knockout of period n most clock neurons resembles the null mutant phenotype. Our results show that mutations in components of the positive and negative limbs of the circadian clock result in distinct responses to nocturnal light and highlight the role of genetic factors in modulating behavioural plasticity in response to environmental perturbations.
more »
« less
- PAR ID:
- 10663111
- Publisher / Repository:
- The Royal Society Publishing
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 292
- Issue:
- 2053
- ISSN:
- 1471-2954
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Biological clocks are evolved time-keeping systems by which organisms rhythmically coordinate physiology within the body, and align it with rhythms in their environment. Clocks are highly sensitive to light and are at the interface of several major endocrine pathways. Worryingly, exposure to artificial-light-at-night (ALAN) is rapidly increasing in ever more extensive parts of the world, with likely impact on wild organisms mediated by endocrine–circadian pathways. In this overview, we first give a broad-brush introduction to biological rhythms. Then, we outline interactions between the avian clock, endocrine pathways, and environmental and internal modifiers. The main focus of this review is on the circadian hormone, melatonin. We summarize information from avian field and laboratory studies on melatonin and its relationships with behaviour and physiology, including often neglected developmental aspects. When exposed to ALAN, birds are highly vulnerable to disruption of behavioural rhythms and of physiological systems under rhythmic control. Several studies suggest that melatonin is likely a key mediator for a broad range of effects. We encourage further observational and experimental studies of ALAN impact on melatonin, across the full functional range of this versatile signalling molecule, as well as on other candidate compounds at the endocrine–circadian interface. This article is part of the theme issue ‘Endocrine responses to environmental variation: conceptual approaches and recent developments’.more » « less
-
Kramer, Achim (Ed.)In mammals, the circadian clock coordinates cell physiological processes including inflammation. Recent studies suggested a crosstalk between these two pathways. However, the mechanism of how inflammation affects the clock is not well understood. Here, we investigated the role of the proinflammatory transcription factor NF-κB in regulating clock function. Using a combination of genetic and pharmacological approaches, we show that perturbation of the canonical NF-κB subunit RELA in the human U2OS cellular model altered core clock gene expression. While RELA activation shortened period length and dampened amplitude, its inhibition lengthened period length and caused amplitude phenotypes. NF-κB perturbation also altered circadian rhythms in the master suprachiasmatic nucleus (SCN) clock and locomotor activity behavior under different light/dark conditions. We show that RELA, like the clock repressor CRY1, repressed the transcriptional activity of BMAL1/CLOCK at the circadian E-box cis-element. Biochemical and biophysical analysis showed that RELA binds to the transactivation domain of BMAL1. These data support a model in which NF-kB competes with CRY1 and coactivator CBP/p300 for BMAL1 binding to affect circadian transcription. This is further supported by chromatin immunoprecipitation analysis showing that binding of RELA, BMAL1 and CLOCK converges on the E-boxes of clock genes. Taken together, these data support a significant role for NF-κB in directly regulating the circadian clock and highlight mutual regulation between the circadian and inflammatory pathways.more » « less
-
Penfield, Steve (Ed.)Abstract The transcriptomes of many eukaryotic genomes exhibit rhythmic gene expression, resulting in genes that show peak expression at specific times of the day. In plants, genes that are considered to be oscillator components alter the circadian period and/or phase (time of peak expression) when misexpressed. The first plant circadian clock gene was identified almost 30 years ago, and since then additional components have been identified through forward and reverse genetic mutant screens. Over the years, mathematical modeling has helped to refine our understanding of oscillator interactions within the network and in the context of environmental cues. The complexity of the clock network suggests that additional components are yet to be discovered. In the era of genomics and genome-scale analysis, circadian research has focused on understanding the mechanisms of clock gene control of cellular and physiological output processes, often in the context of environmental stimuli. Transcriptome studies with temporal and/or spatial resolution are increasingly being carried out and the resulting comprehensive datasets can be mined to predict new oscillator components. Most clock genes show stronger oscillatory expression patterns compared to other genes in the genome. By selecting from transcriptome data genes that are significantly and robustly rhythmic, putative clock genes can be identified and characterized.more » « less
-
Biological rhythms are ubiquitous. They can be generated by circadian oscillators, which produce daily rhythms in physiology and behavior, as well as by developmental oscillators such as the segmentation clock, which periodically produces modular developmental units. Here, we show that the circadian clock controls the timing of late-stage floret development, or anthesis, in domesticated sunflowers. In these plants, up to thousands of individual florets are tightly packed onto a capitulum disk. While early floret development occurs continuously across capitula to generate iconic spiral phyllotaxy, during anthesis floret development occurs in discrete ring-like pseudowhorls with up to hundreds of florets undergoing simultaneous maturation. We demonstrate circadian regulation of floral organ growth and show that the effects of light on this process are time-of-day dependent. Delays in the phase of floral anthesis delay morning visits by pollinators, while disruption of circadian rhythms in floral organ development causes loss of pseudowhorl formation and large reductions in pollinator visits. We therefore show that the sunflower circadian clock acts in concert with environmental response pathways to tightly synchronize the anthesis of hundreds of florets each day, generating spatial patterns on the developing capitulum disk. This coordinated mass release of floral rewards at predictable times of day likely promotes pollinator visits and plant reproductive success.more » « less
An official website of the United States government

