skip to main content


Search for: All records

Creators/Authors contains: "Abduallah, Yasser"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2025
  2. Abstract

    We propose a novel deep learning framework, named SYMHnet, which employs a graph neural network and a bidirectional long short‐term memory network to cooperatively learn patterns from solar wind and interplanetary magnetic field parameters for short‐term forecasts of the SYM‐H index based on 1‐ and 5‐min resolution data. SYMHnet takes, as input, the time series of the parameters' values provided by NASA's Space Science Data Coordinated Archive and predicts, as output, the SYM‐H index value at time pointt + whours for a given time pointtwherewis 1 or 2. By incorporating Bayesian inference into the learning framework, SYMHnet can quantify both aleatoric (data) uncertainty and epistemic (model) uncertainty when predicting future SYM‐H indices. Experimental results show that SYMHnet works well at quiet time and storm time, for both 1‐ and 5‐min resolution data. The results also show that SYMHnet generally performs better than related machine learning methods. For example, SYMHnet achieves a forecast skill score (FSS) of 0.343 compared to the FSS of 0.074 of a recent gradient boosting machine (GBM) method when predicting SYM‐H indices (1 hr in advance) in a large storm (SYM‐H = −393 nT) using 5‐min resolution data. When predicting the SYM‐H indices (2 hr in advance) in the large storm, SYMHnet achieves an FSS of 0.553 compared to the FSS of 0.087 of the GBM method. In addition, SYMHnet can provide results for both data and model uncertainty quantification, whereas the related methods cannot.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  3. Abstract

    Solar flares are explosions on the Sun. They happen when energy stored in magnetic fields around solar active regions (ARs) is suddenly released. Solar flares and accompanied coronal mass ejections are sources of space weather, which negatively affects a variety of technologies at or near Earth, ranging from blocking high-frequency radio waves used for radio communication to degrading power grid operations. Monitoring and providing early and accurate prediction of solar flares is therefore crucial for preparedness and disaster risk management. In this article, we present a transformer-based framework, named SolarFlareNet, for predicting whether an AR would produce a$$\gamma$$γ-class flare within the next 24 to 72 h. We consider three$$\gamma$$γclasses, namely the$$\ge$$M5.0 class, the$$\ge$$M class and the$$\ge$$C class, and build three transformers separately, each corresponding to a$$\gamma$$γclass. Each transformer is used to make predictions of its corresponding$$\gamma$$γ-class flares. The crux of our approach is to model data samples in an AR as time series and to use transformers to capture the temporal dynamics of the data samples. Each data sample consists of magnetic parameters taken from Space-weather HMI Active Region Patches (SHARP) and related data products. We survey flare events that occurred from May 2010 to December 2022 using the Geostationary Operational Environmental Satellite X-ray flare catalogs provided by the National Centers for Environmental Information (NCEI), and build a database of flares with identified ARs in the NCEI flare catalogs. This flare database is used to construct labels of the data samples suitable for machine learning. We further extend the deterministic approach to a calibration-based probabilistic forecasting method. The SolarFlareNet system is fully operational and is capable of making near real-time predictions of solar flares on the Web.

     
    more » « less
  4. Abstract

    Small-scale interplanetary magnetic flux ropes (SMFRs) are similar to ICMEs in magnetic structure, but are smaller and do not exhibit coronal mass ejection plasma signatures. We present a computationally efficient and GPU-powered version of the single-spacecraft automated SMFR detection algorithm based on the Grad–Shafranov (GS) technique. Our algorithm can process higher resolution data, eliminates selection bias caused by a fixed 〈B〉 threshold, has improved detection criteria demonstrated to have better results on an MHD simulation, and recovers full 2.5D cross sections using GS reconstruction. We used it to detect 512,152 SMFRs from 27 yr (1996–2022) of 3 s cadence Wind measurements. Our novel findings are the following: (1) the SMFR filling factor (∼ 35%) is independent of solar activity, distance to the heliospheric current sheet, and solar wind plasma type, although the minority of SMFRs with diameters greater than ∼0.01 au have a strong solar activity dependence; (2) SMFR diameters follow a log-normal distribution that peaks below the resolved range (≳104km), although the filling factor is dominated by SMFRs between 105and 106km; (3) most SMFRs at 1 au have strong field-aligned flows like those from Parker Solar Probe measurements; (4) the radial density (generally ∼1 detected per 106km) and axial magnetic flux density of SMFRs are higher in faster solar wind types, suggesting that they are more compressed. Implications for the origin of SMFRs and switchbacks are briefly discussed. The new algorithm and SMFR dataset are made freely available.

     
    more » « less
  5. Abstract

    Interplanetary magnetic flux ropes (MFRs) are commonly observed structures in the solar wind, categorized as magnetic clouds (MCs) and small-scale MFRs (SMFRs) depending on whether they are associated with coronal mass ejections. We apply machine learning to systematically compare SMFRs, MCs, and ambient solar wind plasma properties. We construct a data set of 3-minute averaged sequential data points of the solar wind’s instantaneous bulk fluid plasma properties using about 20 years of measurements from Wind. We label samples by the presence and type of MFRs containing them using a catalog based on Grad–Shafranov (GS) automated detection for SMFRs and NASA's catalog for MCs (with samples in neither labeled non-MFRs). We apply the random forest machine learning algorithm to find which categories can be more easily distinguished and by what features. MCs were distinguished from non-MFRs with an area under the receiver-operator curve (AUC) of 94% and SMFRs with an AUC of 89%, and had distinctive plasma properties. In contrast, while SMFRs were distinguished from non-MFRs with an AUC of 86%, this appears to rely solely on the 〈B〉 > 5 nT threshold applied by the GS catalog. The results indicate that SMFRs have virtually the same plasma properties as the ambient solar wind, unlike the distinct plasma regimes of MCs. We interpret our findings as additional evidence that most SMFRs at 1 au are generated within the solar wind. We also suggest that they should be considered a salient feature of the solar wind’s magnetic structure rather than transient events.

     
    more » « less
  6. Abstract

    Coronal mass ejections (CMEs) are massive solar eruptions, which have a significant impact on Earth. In this paper, we propose a new method, called DeepCME, to estimate two properties of CMEs, namely, CME mass and kinetic energy. Being able to estimate these properties helps better understand CME dynamics. Our study is based on the CME catalog maintained at the Coordinated Data Analysis Workshops Data Center, which contains all CMEs manually identified since 1996 using the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory. We use LASCO C2 data in the period between 1996 January and 2020 December to train, validate, and test DeepCME through 10-fold cross validation. The DeepCME method is a fusion of three deep-learning models, namely ResNet, InceptionNet, and InceptionResNet. Our fusion model extracts features from LASCO C2 images, effectively combining the learning capabilities of the three component models to jointly estimate the mass and kinetic energy of CMEs. Experimental results show that the fusion model yields a mean relative error (MRE) of 0.013 (0.009, respectively) compared to the MRE of 0.019 (0.017, respectively) of the best component model InceptionResNet (InceptionNet, respectively) in estimating the CME mass (kinetic energy, respectively). To our knowledge, this is the first time that deep learning has been used for CME mass and kinetic energy estimations.

     
    more » « less
  7. The Sun constantly releases radiation and plasma into the heliosphere. Sporadically, the Sun launches solar eruptions such as flares and coronal mass ejections (CMEs). CMEs carry away a huge amount of mass and magnetic flux with them. An Earth-directed CME can cause serious consequences to the human system. It can destroy power grids/pipelines, satellites, and communications. Therefore, accurately monitoring and predicting CMEs is important to minimize damages to the human system. In this study we propose an ensemble learning approach, named CMETNet, for predicting the arrival time of CMEs from the Sun to the Earth. We collect and integrate eruptive events from two solar cycles, #23 and #24, from 1996 to 2021 with a total of 363 geoeffective CMEs. The data used for making predictions include CME features, solar wind parameters and CME images obtained from the SOHO/LASCO C2 coronagraph. Our ensemble learning framework comprises regression algorithms for numerical data analysis and a convolutional neural network for image processing. Experimental results show that CMETNet performs better than existing machine learning methods reported in the literature, with a Pearson product-moment correlation coefficient of 0.83 and a mean absolute error of 9.75 h. 
    more » « less
  8. Abstract

    Solar energetic particles (SEPs) are an essential source of space radiation, and are hazardous for humans in space, spacecraft, and technology in general. In this paper, we propose a deep-learning method, specifically a bidirectional long short-term memory (biLSTM) network, to predict if an active region (AR) would produce an SEP event given that (i) the AR will produce an M- or X-class flare and a coronal mass ejection (CME) associated with the flare, or (ii) the AR will produce an M- or X-class flare regardless of whether or not the flare is associated with a CME. The data samples used in this study are collected from the Geostationary Operational Environmental Satellite's X-ray flare catalogs provided by the National Centers for Environmental Information. We select M- and X-class flares with identified ARs in the catalogs for the period between 2010 and 2021, and find the associations of flares, CMEs, and SEPs in the Space Weather Database of Notifications, Knowledge, Information during the same period. Each data sample contains physical parameters collected from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Experimental results based on different performance metrics demonstrate that the proposed biLSTM network is better than related machine-learning algorithms for the two SEP prediction tasks studied here. We also discuss extensions of our approach for probabilistic forecasting and calibration with empirical evaluation.

     
    more » « less
  9. Abstract Solar flare prediction plays an important role in understanding and forecasting space weather. The main goal of the Helioseismic and Magnetic Imager (HMI), one of the instruments on NASA’s Solar Dynamics Observatory, is to study the origin of solar variability and characterize the Sun’s magnetic activity. HMI provides continuous full-disk observations of the solar vector magnetic field with high cadence data that lead to reliable predictive capability; yet, solar flare prediction effort utilizing these data is still limited. In this paper, we present a machine-learning-as-a-service (MLaaS) framework, called DeepSun, for predicting solar flares on the web based on HMI’s data products. Specifically, we construct training data by utilizing the physical parameters provided by the Space-weather HMI Active Region Patch (SHARP) and categorize solar flares into four classes, namely B, C, M and X, according to the X-ray flare catalogs available at the National Centers for Environmental Information (NCEI). Thus, the solar flare prediction problem at hand is essentially a multi-class (i.e., four-class) classification problem. The DeepSun system employs several machine learning algorithms to tackle this multi-class prediction problem and provides an application programming interface (API) for remote programming users. To our knowledge, DeepSun is the first MLaaS tool capable of predicting solar flares through the internet. 
    more » « less